Physics of Particles and Nuclei Letters

, Volume 14, Issue 4, pp 560–570 | Cite as

Astrophysical S-factor of T(4He, γ)7Li reaction at E cm = 15.7 keV

  • V. M. Bystritsky
  • G. N. Dudkin
  • E. G. Emets
  • M. Filipowicz
  • A. R. Krylov
  • B. A. Nechaev
  • A. Nurkin
  • V. N. Padalko
  • A. V. Philippov
  • A. B. Sadovsky
Physics of Elementary Particles and Atomic Nuclei. Experiment


The astrophysical S-factor of the reaction T(4He, γ)7Li is measured for the first time at the center of mass energy E cm = 15.7 keV, lower than the energy range of the Standard Big Bang Nucleosynthesis (SBBN) model. The experiment is performed on a Hall pulsed accelerator (TPU, Tomsk). An acceleration pulse length of 10 μs allows one to suppress the background of cosmic radiation and the ambient medium by five orders of magnitude. A beam intensity of ~ 5 × 1014 4He+ ions per pulse allows one to measure an extremely low reaction yield. The yield of γ-quanta with the energies E γ 0 = 2483.7 keV and E γ 1 = 2006.1 keV is registered by NaI(Tl) detectors with the efficiency ε = 0.331 ± 0.026. A method for direct measurement of the background from the chain of reactions T(4He, 4He)T→T(T, 2n)X→(n, γ) and/or (n, n′γ) which ends by neutron activation of materials surrounding the target is proposed and implemented in this study. The value of the astrophysical S-factor of the reaction T(4He, γ)7Li S αt (E cm = 15.7 keV) = 0.091 ± 0.032 keV b provides the choice from the set of experimental data for the astrophysical S αt -factor in favor of experimental data [4] with S αt (E cm = 0) = 0.1067 ± 0.0064 keV b.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. B. Fields, “The primordial lithium problem,” Rev. Nucl. Part. Sci. 61, 47 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    R. H. Cyburt, B. D. Fields, K. A. Olive, and Tsun-Han Yeh, “Big Bang nucleosynthesis: present status,” Rev. Mod. Phys. 88, 015004 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Xu, K. Takahashi, S. Goriely, et al., “NACRE II: an update of the NACRE compilation of charged-particleinduced thermonuclear reaction rates for nuclei with mass number A < 16,” Nucl. Phys. A 918, 61 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    C. R. Brune, R. W. Kavanagh, and C. Rolfs, “3H(α, γ)7Li reaction at low energies,” Phys. Rev. C 50, 2205 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    G. M. Griffiths, J. B. Warren, R. A. Morrow, and P. J. Riley, “The T(α, γ)7Li reaction,” Can. J. Phys. 39, 1397 (1961).ADSCrossRefGoogle Scholar
  6. 6.
    S. Burzyński, K. Czerski, A. Marcinkowski, and P. Zupranski, “The 3H(α, γ)7Li reaction in the energy range from 0.7 to 2.0 MeV,” Nucl. Phys. A 473, 179 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    U. Schroder et al., “Astrophysical S factor of 3H(α, γ) 7Li,” Phys. Lett. B 192, 55 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    H. Utsunomiya et al., Phys. Lett. B 211, 24 (1988); Nucl. Phys. A 511, 379 (1990); Phys. Rev. Lett. 65, 847 (1990); Phys. Rev. Lett. 69, 863(E) (1992).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Tokimoto, H. Utsunomiya, T. Yamagata, et al., “Coulomb breakup of 7Li for nuclear astrophysics,” Phys. Rev. C 63, 035801 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    A. S. Solovyev, S. Yu. Igashov, and Y. M. Tchuvil’sky, “Microscopic calculation of astrophysical S-factor and branching ratio for the 3H(α, γ) 7Li reaction,” EPJ Web Conf. 86, 00054 (2015).CrossRefGoogle Scholar
  11. 11.
    V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, et al., “First experimental evidence of D(p, γ)3He reaction in deuteride titanium in ultralow collision energy region,” Nucl. Instrum. Methods Phys. Res. A 753, 91 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    V. M. Bystritsky et al., “Study of the d(p, γ) 3He reaction at ultralow energies using a zirconium deuteride target,” Nucl. Instrum. Methods Phys. Res. A 737, 248 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    V. M. Bystritsky, G. N. Dudkin, A. R. Krylov, et al., “A method for investigation of the d(4He, γ)6Li reaction in the ultralow energy region under a high background,” Nucl. Instrum. Methods Phys. Res. A 825, 24 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    V. M. Bystritsky et al., “Study of the d(d, n) 3He reaction in the astrophysical energy region with the use of the Hall accelerator,” Eur. Phys. J. A 36, 151 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    V. M. Bystritsky, G. N. Dudkin, S. I. Kyznetsov, et al., “Research methods for parameters of accelerated low energy proton beam,” Phys. Part. Nucl. Lett. 12, 597 (2015).CrossRefGoogle Scholar
  16. 16.
    A. P. Kobzev, J. Huran, D. Maczka, et al., “Investigation of light element contents in subsurface layers of silicon,” Vacuum 83, 124 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    R. B. Firestone and V. S. Shirley, Table of Isotopes, 8th ed. (Wiley, New York, 1998).Google Scholar
  18. 18.
    D. B. Sayre, C. R. Brune, J. A. Caggiano, et al., “Measurement of the T + T neutron spectrum using the national ignition facility,” Phys. Rev. Lett. 111, 052501 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    D. T. Casey, J. A. Frenje, M. G. Johnson, et al., “Measurements of the T(t, 2n)4He neutron spectrum at low reactant energies from inertial confinement implosions,” Phys. Rev. Lett. 109, 025003 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    M. Anders, D. Trezzi, A. Bellini, et al., “Neutroninduced background by an α-beam incident on a deuterium gas target and its implications for the study of the 2H(α, γ)6Li reaction at LUNA,” Eur. Phys. J. A 49, 28 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    A. Negret, C. Borcea, Ph. Dessagne, et al., “Cross section measurements for the 56Fe(n, xnγ) reactions,” Phys. Rev. C 90, 034602 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    E. L. Trykov and I. R. Svinin, “Analysis and reevaluation of the neutron cross sections for 23Na,” INDC(CCP) (IAEA, 2000), Vol. 425Google Scholar
  23. 23.
    H. Makii, Y. Nagai, K. Mishima, et al., “Neutroninduced reactions using a γ-ray detector in a 12C(α, γ)16O reaction study,” Phys. Rev. C 76, 022801(R) (2007).Google Scholar
  24. 24.
    L. C. Mihailescu, C. Borcea, P. Baumann, et al., “A measurement of (n, xnγ) cross sections for 208Pb from threshold up to 20 MeV,” Nucl. Phys. A 811, 1 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    L. C. Mihailescu, C. Borcea, A. J. Koning, and A. J. M. Plompen, “High resolution measurement of neutron inelastic scattering and (n, 2n) cross sections for 52Cr,” Nucl. Phys. A 786, 1 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    Libraries ENDF/B-VII.1, IAEA Nuclear Data Services. Scholar
  27. 27.
    V. M. Bystritsky and F. M. Pen’kov, “Analytic estimates of the product yields for nuclear reaction in the ultralow energy range,” Phys. At. Nucl. 66, 76 (2003).Google Scholar
  28. 28.
    M. M. Filipowicz, V. M. Bystritsky, G. N. Dudkin, F. M. Penk’ov, and A. V. Philippov “Monte Carlo simulations of dd reaction parameters study at ultra-low energy range using plasma Hall accelerator and deuterized targets,” Int. J. Mod. Phys. E 21, 1250089 (2012).Google Scholar
  29. 29.
    T. Kajino, “The 3He(α, γ)7Be and 3H(α, γ) 7Li reactions at astrophysical energies,” Nucl. Phys. A 460, 559 (1986).ADSCrossRefGoogle Scholar
  30. 30.
    K. Langanke, “Microscopic potential model studies of light nuclear capture reactions,” Nucl. Phys. A 457, 351 (1986).ADSCrossRefGoogle Scholar
  31. 31.
    C. Angulo et al., “A compilation of charged-particleinduced thermonuclear reaction rates,” Nucl. Phys. A 656, 3 (1999).ADSCrossRefGoogle Scholar
  32. 32.
    S. B. Igamov and R. Yarmukhamedov, “Modified twobody potential approach to the peripheral direct capture astrophysical a + A → B + γ reaction and asymptotic normalization coefficients,” Nucl. Phys. A 781, 247 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. M. Bystritsky
    • 1
  • G. N. Dudkin
    • 2
  • E. G. Emets
    • 2
  • M. Filipowicz
    • 3
  • A. R. Krylov
    • 1
  • B. A. Nechaev
    • 2
  • A. Nurkin
    • 2
  • V. N. Padalko
    • 2
  • A. V. Philippov
    • 1
  • A. B. Sadovsky
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.Faculty of Energy and FuelsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations