Advertisement

Physics of Particles and Nuclei Letters

, Volume 14, Issue 4, pp 576–583 | Cite as

Azimuthal pion fluctuation in ultra relativistic nuclear collisions and centrality dependence—a study with chaos based complex network analysis

Physics of Elementary Particles and Atomic Nuclei. Experiment

Abstract

Various works on multiplicity fluctuation have investigated the dynamics of particle production process and eventually have tried to reveal a signature of phase transition in ultra-relativistic nuclear collisions. Analysis of fluctuations of spatial patterns has been conducted in terms of conventional approach. However, analysis with fractal dynamics on the scaling behavior of the void has not been explored yet. In this work we have attempted to analyze pion fluctuation in terms of the scaling behavior of the void probability distribution in azimuthal space in ultra-relativistic nuclear collisions in the light of complex networks. A radically different and rigorous method viz. Visibility Graph was applied on the data of 32S-Ag/Br interaction at an incident energy of 200 GeV per nucleon. The analysis reveals strong scaling behavior of void probability distributions in azimuthal space and a strong centrality dependence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Ghosh, A. Deb, S. Bhattacharyya, J. G. R. Das, and S. Mukherjee, “Evidence of intermittent type fluctuation of target residue in relativistic nuclear collisions at a few GeV/N,” Int. J. Mod. Phys. E 12, 407–419 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    S. Sarkar, T. Goswami, D. Ghosh, and A. Deb, “Intermittency in the slow particle emission during hadron nucleus interactions,” Czechosl. J. Phys. 53, 133–141 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    A. Bialas and B. Ziaja, “Intermittency in a single event,” Phys. Lett. B 378, 319–322 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    D. Ghosh, P. Ghosh, A. Ghosh, and J. Roy, “Intermittency and fragmentation of target residue in highenergy nuclear interactions,” Phys. Rev. 49, R1747–R1750 (1994).ADSGoogle Scholar
  5. 5.
    D. Ghosh, A. Deb, M. Lahiri, A. Dey, S. A. Hossain, S. Das, S. Sen, S. Halder, and J. Roy, “Multihadron production in high-energy interactions and intermittency,” Phys. Rev. D 49, 3113–3119 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    D. Ghosh, P. Ghosh, A. Ghosh, and J. Roy, “Nonstatistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions,” J. Phys. G: Nucl. Part. Phys. 20, 1077–1082 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    D. Ghosh, A. K. Jafry, A. Deb, S. Sarkar, R. Chattopadhyay, and S. Das, “Multidimensional intermittency analysis in ultrarelativistic heavy ion interaction,” Phys. Rev. C 59, 2286–2288 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    “Factorial, multifractal moments and short-range correlation of shower particles at relativistic energies," Nucl. Phys. A 596, 700–712 (1996).Google Scholar
  9. 9.
    D. Ghosh, J. Roy, M. Basu, K. Sengupta, S. Naha, A. Bhattacharyya, and T. G. Thakurta, “Rapidity-gap and rapidity-correlation study in 400-GeV/c protonnucleus interactions,” Phys. Rev. D 26, 2983–2990 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    D. Ghosh, K. Purkait, and R. Sengupta, “Correlation among target fragments in ‘hot’ and ‘cold’ events in relativistic heavy ion interaction,” Acta Phys. Slov. 47, 425–430 (1997).Google Scholar
  11. 11.
    D. Ghosh, A. Deb, S. Bhattacharyya, M. Mondol, R. Das, J. Ghosh, K. Chattopadhayay, R. Sarkar, S. Mukherjee, S. Biswas, et al., “Target fragmentation in 28Si-AgBr interactions at 14.5 AGeV-evidence for two-and many-particle dynamical correlations,” Fizika B (Zagreb) 11 (1/4), 73–82 (2002).ADSGoogle Scholar
  12. 12.
    R. C. Hwa and Q.-h. Zhang, “Erraticity of rapidity gaps,” Phys. Rev. D 62, 014003 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    R. C. Hwa, “Fractal measures in multiparticle production,” Phys. Rev. D 41, 1456–1462 (1990).ADSCrossRefGoogle Scholar
  14. 14.
    F. Takagi, “Multifractal structure of multiplicity distributions in particle collisions at high energies,” Phys. Rev. Lett. 72, 32–35 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    G. Paladin and A. Vulpiani, “Anomalous scaling laws in multifractal objects,” Phys. Rep. 156, 147–225 (1987).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    P. Grassberger and I. Procaccia, “Dimensions and entropies of strange attractors from a fluctuating dynamics approach,” Phys. D: Nonlin. Phenom. 13, 34–54 (1984).ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, “Fractal measures and their singularities: the characterization of strange sets,” Phys. Rev. A 33, 1141–1151 (1986).ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    D. Ghosh, A. Mukhopadhyay, A. Ghosh, and J. Roy, “Zonal poissonian pion multiplicity in central 24Mg-AgBr collisions at Dubna energy,” Mod. Phys. Lett. A 04, 1197–1202 (1989).ADSCrossRefGoogle Scholar
  19. 19.
    D. Ghosh, M. Lahiri, A. Deb, S. Das, K. Purkait, B. Biswas, J. Roychoudhury, R. Chatterjee, and A. K. Zafri, “Factorial correlator study in Ag32/Br interaction at 200A GeV,” Phys. Rev. C 52, 2092–2096 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    D. Ghosh, M. Momdal, A. Deb, and A. Ghosh, “Erractivity analysis of multipion data in 32A-AgBr interactions at 200A GeV,” Phys. Rev. D: Part. Fields 68, 024908 (2003).ADSGoogle Scholar
  21. 21.
    D. Ghosh, P. Ghosh, A. Deb, and D. Halder, S. Das, A. Hossain, A. Dey, and J. Roy, “Self-similarity in particle production in hadron-nucleus interactions at 350 and 200 GeV/c,” Phys. Rev. D 46, 3712–3719 (1992).ADSCrossRefGoogle Scholar
  22. 22.
    D. Ghosh, S. Sen, and J. Roy, “Maximum fluctuations of particle densities in narrow pseudorapidity space in high-energy interaction of hadrons with nuclei,” Phys. Rev. D 47, 1235–1238 (1993).ADSCrossRefGoogle Scholar
  23. 23.
    D. Ghosh, A. Deb, S. R. Sahoo, and P. K. Haldar, “A study on azimuthal asymmetry of emission of pions produced in ultra-relativistic nuclear collisions,” Europhys. Lett. 56, 639–643 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    D. Ghosh, A. Deb, M. Mondal, and J. Ghosh, “Analysis of fluctuation of fluctuations in 32S-AgBr interactions at 200 AGeV,” Phys. Lett. B 540, 52–61 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    D. Ghosh, A. Deb, M. Mondal, and J. Ghosh, “Multiplicity- dependent chaotic pionization in ultra-relativistic nuclear interactions,” J. Phys. G: Nucl. Part. Phys. 29, 2087–2098 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    D. Ghosh, A. Deb, S. Bhattacharyya, and U. Datta, “Multiplicity scaling of target protons in high-energy nucleus-nucleus and hadron-nucleus interactions,” J. Phys. G: Nucl. Part. Phys. 39, 035101 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    M. S. Taqqu, V. Teverovsky, and W. Willinger, “Estimators for long-range dependence: an empirical study,” Fractals 03, 785–798 (1995).CrossRefMATHGoogle Scholar
  28. 28.
    Z. Chen, P. C. Ivanov, K. Hu, and H. E. Stanley, “Effect of nonstationarities on detrended fluctuation analysis,” Phys. Rev. E 65, 041107 (2002).ADSCrossRefGoogle Scholar
  29. 29.
    C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, “Mosaic organization of DNA nucleotides,” Phys. Rev. E 49, 1685–1689 (1994).ADSCrossRefGoogle Scholar
  30. 30.
    J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).ADSCrossRefMATHGoogle Scholar
  31. 31.
    J. W. Kantelhardt, E. Koscielny-Bunde, H. H. Rego, S. Havlin, and A. Bunde, “Detecting long-range correlations with detrended fluctuation analysis,” Physica A 295, 441–454 (2001).ADSCrossRefMATHGoogle Scholar
  32. 32.
    S. Bhaduri and D. Ghosh, “Speech, music and multifractality,” Curr. Sci. 110, 1817 (2016).CrossRefGoogle Scholar
  33. 33.
    S. Bhaduri and D. Ghosh, “Non-invasive detection of alzheimer’s disease—multifractality of emotional speech,” J. Neurol. Neurosci. (2016).Google Scholar
  34. 34.
    S. Dutta, “Multifractal properties of ECG patterns of patients suffering from congestive heart failure,” J. Stat. Mech.: Theory Exp. 2010, 12021 (2010).CrossRefGoogle Scholar
  35. 35.
    S. Dutta, D. Ghosh, and S. Chatterjee, “Multifractal detrended fluctuation analysis of human gait diseases,” Front. Physiol. 4 (2013).Google Scholar
  36. 36.
    D. Ghosh, S. Dutta, and S. Chakraborty, “Multifractal detrended cross-correlation analysis for epileptic patient in seizure and seizure free status,” Chaos, Solitons Fractals 67, 1–10 (2014).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Y. X. Zhang, W. Y. Qian, and C. B. Yang, “Multifractal structure of pseudorapidity and azimuthal distributions of the shower particles in Au + Au collisions at 200 A GeV,” Int. J. Mod. Phys. A 23, 2809–2816 (2008).ADSCrossRefGoogle Scholar
  38. 38.
    D. Ghosh, A. Deb, and M. Lahiri, “Factorial and fractal analysis of the multipion production process at 350 GeV/c,” Phys. Rev. D 51, 3298–3304 (1995).ADSCrossRefGoogle Scholar
  39. 39.
    D. Ghosh, A. Deb, P. Bandyopadhyay, M. Mondal, S. Bhattacharyya, J. Ghosh, and K. Kumar Patra, “Evidence of multifractality and constant specific heat in hadronic collisions at high energies,” Phys. Rev. C 65, 067902 (2002).ADSCrossRefGoogle Scholar
  40. 40.
    D. Ghosh, A. Deb, S. Pal, P. K. Haldar, S. Bhattacharyya, P. Mandal, S. Biswas, and M. Mondal, “Evidence of fractal behavior of pions and protons in high energy interactions–an experimental investigation,” Fractals 13, 325–339 (2005).CrossRefGoogle Scholar
  41. 41.
    S. Dutta, D. Ghosh, and S. Chatterjee, “Multifractal detrended fluctuation analysis of pseudorapidity and azimuthal distribution of pions emitted in high energy nuclear collisions,” Int. J. Mod. Phys. A 29, 1450084 (2014).ADSCrossRefGoogle Scholar
  42. 42.
    P. Mali, S. Sarkar, S. Ghosh, A. Mukhopadhyay, and G. Singh, “Multifractal detrended fluctuation analysis of particle density fluctuations in high-energy nuclear collisions,” Physica A 424, 25–33 (2015).CrossRefGoogle Scholar
  43. 43.
    L. Lacasa, B. Luque, F. Ballesteros, and J. Luque, “From time series to complex networks: the visibility graph,” Proc. Natl. Acad. Sci. USA 105, 4972–4975 (2008).ADSMathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    L. Lacasa, B. Luque, and J. Luque, “The visibility graph: a new method for estimating the hurst exponent of fractional Brownian motion,” Europhys. Lett. 86, 30001 (2009).ADSCrossRefGoogle Scholar
  45. 45.
    S. Jiang, C. Bian, X. Ning, and Q. D. Y. Ma, “Visibility graph analysis on heartbeat dynamics of meditation training,” Appl. Phys. Lett. 102, 253702 (2013).ADSCrossRefGoogle Scholar
  46. 46.
    S. Bhaduri and D. Ghosh, “Electroencephalographic data analysis with visibility graph technique for quantitative assessment of brain dysfunction,” Clin. EEG Neurosci. 46, 218–223 (2015).CrossRefGoogle Scholar
  47. 47.
    A. Bhaduri and D. Ghosh, “Quantitative assessment of heart rate dynamics during meditation: an ECG based study with multi-fractality and visibility graph,” Front. Physiol. 7 (2016).Google Scholar
  48. 48.
    G. Zebende, M. Silva, A. Rosa, A. Alves, J. de Jesus, and M. Moret, “Studying long-range correlations in a liquid-vapor-phase transition,” Physica A 342, 322–328 (2004).ADSCrossRefGoogle Scholar
  49. 49.
    L. Zhao, W. Li, C. Yang, J. Han, Z. Su, Y. Zou, and X. Cai, “Multifractal and network analysis of phase transition,” (2017). doi 10.1371/journal.pone.0170467Google Scholar
  50. 50.
    S. Bhaduri and D. Ghosh, “Study of void probability scaling of pions in ultrarelativistic nuclear collision in fractal scenario,” (2017, in press).Google Scholar
  51. 51.
    N. S. Amelin, E. F. Staubo, L. P. Csernai, V. D. Toneev, K. K. Gudima, and D. Strottman, “Transverse flow and collectivity in ultrarelativistic heavy-ion collisions,” Phys. Rev. Lett. 67, 1523–1526 (1991).ADSCrossRefGoogle Scholar
  52. 52.
    J.-Y. Ollitrault, “Anisotropy as a signature of transverse collective flow,” Phys. Rev. D 46, 229–245 (1992).ADSCrossRefGoogle Scholar
  53. 53.
    S. Mrówczyński, “Plasma instability at the initial stage of ultrarelativistic heavy-ion collisions,” Phys. Lett. B 314, 118–121 (1993).ADSCrossRefGoogle Scholar
  54. 54.
    M. Ahmadlou, H. Adeli, and A. Adeli, “Improved visibility graph fractality with application for the diagnosis of autism spectrum disorder,” Physica A 391, 4720–4726 (2012).ADSCrossRefGoogle Scholar
  55. 55.
    C. F. Powell, P. H. Fowler, and D. H. Perkins, The Study of Elementary Particles by the Photographic Method (Pergamon, New York, 1959).Google Scholar
  56. 56.
    N. Agababyan, M. Atayan, and M. Charlet, J. Czyejewski, E. de Wolf, K. Dziunikowska, A. Endler, Z. Garutchava, H. Gulkanyan, R. Hakobyan, J. Karamyan, D. Kisielewska, W. Kittel, L. Liu, S. Mehrabyan, et al., “Self-affine fractality in π + p and K + p collisions at 250 GeV/c,” Phys. Lett. B 382, 305–311 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Deepa Ghosh Research FoundationKolkataIndia

Personalised recommendations