Physics of Particles and Nuclei Letters

, Volume 13, Issue 4, pp 427–435 | Cite as

Sub-barrier fusion excitation function data and energy dependent Woods–Saxon potential

Physics of Elementary Particles and Atomic Nuclei. Theory
  • 30 Downloads

Abstract

This paper analyzed the role of intrinsic degrees of freedom of colliding nuclei in the enhancement of sub-barrier fusion cross-section data of various heavy ion fusion reactions. The influences of inelastic surface vibrations of colliding pairs are found to be dominant and their couplings result in the significantly larger fusion enhancement over the predictions of the one dimensional barrier penetration model at sub-barrier energies. The theoretical calculations are performed by using energy dependent Woods–Saxon potential model (EDWSP model) in conjunction with the one dimensional Wong formula. The effects of dominant intrinsic channels are entertained within framework of the coupled channel calculations obtained by using the code CCFULL. It is quite interesting to note that the energy dependence in Woods–Saxon potential simulates the effects of inelastic surface vibrational states of reactants wherein significantly larger value of diffuseness parameter ranging from a = 0.85fm to a = 0.95fm is required to address the observed fusion excitation function data of the various heavy ion fusion reactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Beckerman, Rep. Prog. Phys. 51, 1047 (1988).ADSCrossRefGoogle Scholar
  2. 2.
    W. Reisdorf, J. Phys. G 20, 1297 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    M. Dasgupta, D. J. Hinde, N. Rowley, and A. M. Stefanini, Ann. Rev. Nucl. Part. Sci. 48, 401 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    A. B. Balantekin and N. Takigawa, Rev. Mod. Phys. 70, 77 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    L. F. Canto, P. R. S. Gomes, R. Donangelo, and M. S. Hussein, Phys. Rep. 424, 1 (2006).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    K. Hagino and N. Takigawa, Prog. Theor. Phys. 128, 1061 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    B. B. Back, H. Esbensen, C. L. Jiang, and K. E. Rehm, Rev. Mod. Phys. 86, 317 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    H. Timmers, D. Ackermann, S. Beghini, L. Corradi, J. H. He, G. Montagnoli, F. Scarlassara, A. M. Stefanini, and N. Rowley, Nucl. Phys. A 633, 421 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    M. Trotta, A. M. Stefanini, L. Corradi, A. Gadea, F. Scarlassara, S. Beghini, and G. Montagnoli, Phys. Rev. C 65, 011601 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    A. M. Stefanini, B. R. Behera, S. Beghini, L. Corradi, E. Fioretto, A. Gadea, G. Montagnoli, N. Rowley, F. Scarlassara, S. Szilner, and M. Trotta, Phys. Rev. C 76, 014610 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    J. R. Leigh, M. Dasgupta, D. J. Hinde, J. C. Mein, C. R. Morton, R. C. Lemmon, J. P. Lestone, J. O. Newton, H. Timmers, J. X. Wei, and N. Rowley, Phys. Rev. C 52, 3151 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Sonzogni, J. D. Bierman, M. P. Kelly, J. P. Lestone, J. F. Liang, and R. Vandenbosch, Phys. Rev. C 57, 722 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    H. M. Jia, C. J. Lin, F. Yang, X. X. Xu, H. Q. Zhang, Z. H. Liu, Z. D. Wu, L. Yang, N. R. Ma, P. F. Bao, and L. J. Sun, Phys. Rev. C 89, 064605 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    N. V. S. V. Prasad, A. M. Vinodkumar, A. K. Sinha, K. M. Varier, D. L. Sastry, N. Madhavan, R. Sugathan, D. O. Kataria, and J. J. Das, Nucl. Phys. A 603, 176 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    V. I. Zagrebaev, Phys. Rev. C 67, 061601 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    H. Q. Zhang, C. J. Lin, F. Yang, H. M. Jia, X. X. Xu, Z. D. Wu, F. Jia, S. T. Zhang, Z. H. Liu, A. Richard, and C. Beck, Phys. Rev. C 82, 054609 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    J. O. Newton, C. R. Morton, M. Dasgupta, J. R. Leigh, J. C. Mein, D. J. Hinde, and H. Timmers, Phys. Rev. C 64, 064608 (2001).ADSCrossRefGoogle Scholar
  18. 18.
    A. M. Stefanini, G. Montagnoli, H. Esbensen, L. Corradi, S. Courtin, E. Fioretto, A. Goasduff, J. Grebosz, F. Haas, M. Mazzocco, C. Michelagnoli, T. Mijatovic, D. Montanari, G. Pasqualato, C. Parascandolo, et al., Phys. Lett. B 728, 639 (2014).Google Scholar
  19. 19.
    W. D. Myers and W. J. Swaitecki, Phys. Rev. C 62, 044610 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    C. H. Dasso and G. Pollarolo, Phys. Rev. C 68, 054604 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    K. Hagino, N. Rowley, and M. Dasgupta, Phys. Rev. C 67, 054603 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    R. N. Sagaidak, S. P. Tretyakova, S. V. Khlebnikov, A. A. Ogloblin, N. Rowley, and W. H. Trzaska, Phys. Rev. C 76, 034605 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    N. Wang and W. Scheid, Phys. Rev. C 78, 014607 (2008).ADSCrossRefGoogle Scholar
  24. 24.
    L. C. Vaz, Comput. Phys. Commun. 22, 451 (1981).ADSCrossRefGoogle Scholar
  25. 25.
    V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, and W. Scheid, Eur. Phys. J. A 45, 125 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    D. Sukhvinder, M. Singh, R. Kharab, and H. C. Sharma, Mod. Phys. Lett. A 26, 1017 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    D. Sukhvinder, M. Singh, and R. Kharab, Int. J. Mod. Phys. E 21, 1250054 (2012).Google Scholar
  28. 28.
    D. Sukhvinder, M. Singh, R. Kharab, and H. C. Sharma, Commun. Theor. Phys. 55, 649 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    D. Sukhvinder, M. Singh, R. Kharab, and H. C. Sharma, Phys. At. Nucl. 74, 49 (2011).CrossRefGoogle Scholar
  30. 30.
    J. O. Newton, J. O. Newton, R. D. Butt, M. Dasgupta, D. J. Hinde, I. I. Gontchar, and K. Hagino, Phys. Rev. C 70, 024605 (2004).ADSCrossRefGoogle Scholar
  31. 31.
    A. Mukherjee, D. J. Hinde, M. Dasgupta, K. Hagino, J. O. Newton, and R. D. Butt, Phys. Rev. C 75, 044608 (2007).ADSCrossRefGoogle Scholar
  32. 32.
    M. Singh, D. Sukhvinder, and R. Kharab, Mod. Phys. Lett. A 26, 2129 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    M. Singh, D. Sukhvinder, and R. Kharab, Nucl. Phys. A 897, 179 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    M. Singh, D. Sukhvinder, and R. Kharab, Nucl. Phys. A 897, 198 (2013).ADSCrossRefGoogle Scholar
  35. 35.
    M. Singh, D. Sukhvinder, and R. Kharab, AIP Conf. Proc. 1524, 163 (2013).ADSCrossRefGoogle Scholar
  36. 36.
    M. Singh and R. Kharab, EPJ Web Conf. 66, 03043 (2014).CrossRefGoogle Scholar
  37. 37.
    M. Singh, and R. Kharab, Atti Della “Fondazione Giorgio Ronchi,” Anno LXV 6, 751 (2010).Google Scholar
  38. 38.
    M. Singh, M. Phil. Dissertation (Kurukshetra Univ., Kurukshetra, Haryana, India, 2009, unpublished).Google Scholar
  39. 39.
    M. Singh, PhD Thesis (Kurukshetra Univ., Kurukshetra, Haryana, India, 2013, unpublished).Google Scholar
  40. 40.
    M. S. Gautam, Phys. Rev. C 90, 024620 (2014).ADSCrossRefGoogle Scholar
  41. 41.
    M. S. Gautam, Nucl. Phys. A 933, 272 (2015).ADSCrossRefGoogle Scholar
  42. 42.
    M. S. Gautam, Mod. Phys. Lett. A 30, 1550013 (2015).ADSCrossRefGoogle Scholar
  43. 43.
    M. S. Gautam, Phys. Scr. 90, 025301 (2015).ADSCrossRefGoogle Scholar
  44. 44.
    M. S. Gautam, Phys. Scr. 90, 055301 (2015), Phys. Scr. 90, 125301 (2015), Indian J. Phys. 90, 335 (2016) Braz. J. Phys. 46, 143 (2016), Pramana 86, 1067 (2016), Chinese Phys. C 40, 054101 (2016), Chinese J. Phys. 54, 86 (2016).ADSCrossRefGoogle Scholar
  45. 45.
    M. S. Gautam, Acta Phys. Polon. B 46, 1055 (2015).ADSCrossRefGoogle Scholar
  46. 46.
    M. S. Gautam, Can. J. Phys. 93, 1343 (2015), Chin. Phys. C 39, 114102 (2015), Commun. Theor. Phys. 64, 710 (2015).ADSCrossRefGoogle Scholar
  47. 47.
    M. S. Gautam, Kaur Amandeep, and M. K. Sharma, Phys. Rev. C 92, 054605 (2015), M. S. Gautam and M. K. Sharma, AIP Conf. Proc. 1675, 020052 (2015), M. S. Gautam, and M. K. Sharma, Braz. J. Phys. 46, 133 (2016).ADSCrossRefGoogle Scholar
  48. 48.
    K. Hagino, N. Rowley, and A. T. Kruppa, Comput. Phys. Commun. 123, 143 (1999).ADSCrossRefGoogle Scholar
  49. 49.
    C. Y. Wong, Phys. Rev. Lett. 31, 766 (1973).ADSCrossRefGoogle Scholar
  50. 50.
    Neto R. Liguori, J. C. Acquadro, P. R. S. Gomes, A. S. de Toledo, C. F. Tenreiro, E. Crema, N. C. Filjo, and M. M. Coimnra, Nucl. Phys. A 512, 333 (1990).ADSGoogle Scholar
  51. 51.
    C. P. Silva, D. Pereira, L. C. Chamon, E. S. Rossi, G. Ramirez, A. M. Borges, and C. E. Aguiar, Phys. Rev. C 55, 3155 (1997).ADSCrossRefGoogle Scholar
  52. 52.
    M. Beckerman, M. Salomaa, A. Sperduto, J. D. Molitoris, and A. di Rienzo, Phys. Rev. C 25, 837 (1982).ADSCrossRefGoogle Scholar
  53. 53.
    D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).ADSCrossRefGoogle Scholar
  54. 54.
    L. C. Chamon, B. V. Carlson, L. R. Gasques, D. Pereira, C. de Conti, M. A. G. Alvarez, M. S. Hussein, M. A. Cndido Ribeiro, E. S. Rossi, and C. P. Silva, Phys. Rev. C 66, 014610 (2002).ADSCrossRefGoogle Scholar
  55. 55.
    K. Washiyama and D. Lacroix, Phys. Rev. C 74, 024610 (2008).ADSCrossRefGoogle Scholar
  56. 56.
    C. Simenel, M. Dasgupta, D. J. Hinde, and E. Williams, Phys. Rev. C 88, 064604 (2013).ADSCrossRefGoogle Scholar
  57. 57.
    A. S. Umar, C. Simenel, and V. E. Oberacker, Phys. Rev. C 89, 034611 (2014).ADSCrossRefGoogle Scholar
  58. 58.
    H. Esbensen, S. Landowne, and C. Price, Phys. Rev. C 36, 1216 (1987).ADSCrossRefGoogle Scholar
  59. 59.
    T. Rumin, K. Hagino, and N. Takigawa, Phys. Rev. C 61, 014605 (1999).ADSCrossRefGoogle Scholar
  60. 60.
    V. Tripathi, T. Baby Lagy, J. J. Das, P. Sugathan, N.Madhavan, A. K. Sinha, P. V. Madhusudhana Rao, S. K. Hui, R. Singh, and K. Hagino, Phys. Rev. C 65, 014614 (2001).ADSCrossRefGoogle Scholar
  61. 61.
    A. M. Vinodkumar, K. M. Varier, N. V. S. V. Prasad, D. L. Sastry, A. K. Sinha, N. Madhavan, P. Sugathan, D. O. Kataria, and J. J. Das, Phys. Rev. C 53, 803 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Department of PhysicsIndus Degree CollegeKinana, JindIndia

Personalised recommendations