Advertisement

Physics of Particles and Nuclei Letters

, Volume 13, Issue 3, pp 390–405 | Cite as

Application of the Monte Carlo methods and variational procedure for optimizing time-of-flight neutron diffractometer characteristics

  • A. A. Khrushchinsky
  • S. A. Kuten
  • K. A. Viarenich
  • P. A. Speransky
Neutron Physics
  • 19 Downloads

Abstract

Based on variational calculus, a procedure for the optimal approximation of detector surface of the time-of-flight neutron diffractometer has been suggested. The exact solution for a point sample and zero thickness detector has been obtained. Using the shape of the detector surface, an optimized Monte Carlo simulation has been performed for the parameters of the spectrometer depending on the sample size and detector thickness, its azimuthal and Bragg’s angular dimensions, and taking into account the neutron absorption in the sample and detector.

Keywords

Line Width Nucleus Letter Neutron Beam Detector Surface Variational Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Aksenov and A. M. Balagurov, “Neutron time-offlight diffractometry,” Phys. Usp. 39, 897–924 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    P. Hiismaki, in Proceedings of the 5th IAEA Symposium on Neutron Inelastic Scattering, Grenoble, March 6–10, 1972 (IAEA, Vienna, 1972).Google Scholar
  3. 3.
    H. Poyry, P. Hiismaki, and A. Virjo, “Principles of reverse neutron time-of-flight spectrometry with Fourier chopper applications,” Nucl. Instrum. Methods Phys. Res. 126, 421–433 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    V. A. Trunov, V. A. Kudryashev, V. A. Ul’yanov, A. P. Bulkin, V. G. Muratov, T. K. Korobkova, A. F. Shchebetov, P. Hiismaki, H. Poyry, A. Tiitta, O. Antson, Kh. Mutka, Kh. Kukkonen, and K. Tilli, “High resolution diffractometer called the ‘MiniSfinks’,” Preprint LINP No. 1277 (Leningr. Inst. Nucl. Phys., Leningrad, 1987).Google Scholar
  5. 5.
    V. L. Aksenov, O. Antson, A. M. Balagurov, A. P. Bulkin, B. I. Voronov, V. A. Kudryashev, V. G. Muratov, H. Poyry, Yu. A. Pinchuk, E. V. Serochkin, V. G. Simkin, A. Tiitta, V. A. Trunov, V. M. Frolushkin, P. Hiismaki, and T. Khorvat, “Neutron diffractometer at the IBR-2 reactor,” JINR Commun. P3-91-172 (JINR, Dubna, 1991).Google Scholar
  6. 6.
    J. M. Carpenter, “Extended detectors in neutron timeof-flight diffraction experiments,” Nucl. Instrum. Methods Phys. Res. 47, 179–180 (1967).ADSCrossRefGoogle Scholar
  7. 7.
    A. Holas, Nucleonika 13, 871 (1968).Google Scholar
  8. 8.
    A. Holas et al., JINR Commun. No. E14-3759 (JINR, Dubna, 1968).Google Scholar
  9. 9.
    I. M. Gelfand and V. S. Fomin, Variational Calculus (Fizmatlit, Moscow, 1961), p. 228 [in Russian].Google Scholar
  10. 10.
    A. M. Balagurov and V. A. Kudryashov, “Correlation Fourier diffractometry for long-pulse neutron sources: a new concept,” in Proceedings of the International Collaboration on Advanced Neutron Sources ICANS-XIX, PSI, Grindelwald, Switzerland, March 8–12, 2010.Google Scholar
  11. 11.
    E. S. Kuzmin, Results of High Resolution Fourier Diffractometer Calculation (OIYaI, Dubna, 2012) [in Russian].Google Scholar
  12. 12.
    V. A. Kudryashev, H. G. Priesmeyer, J. M. Keuter, J. Schroder, and R. Wagner, “Optimization of detectors in time-focusing geometry for RTOF neutron difractometers,” Nucl. Instrum. Methods Phys. Res. B 93, 355–361 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    S. A. Kuten and A. A. Khrushchinsky, “Optimization of neutron detector of DN-12 specialized diffractometer,” Report No. 20034475 of Research Work on a Contract Basis No. 17/2003 (NII Yad. Problem, Minsk, 2003), p. 44.Google Scholar
  14. 14.
    J. F. Briesmeister, “MCNPa general Monte Carlo nparticle transport,” Version 4A, LA-12625 (Los Alamos National Laboratory, New Mexico, 1993).Google Scholar
  15. 15.
    C. G. Windsor, Pulsed Neutron Scattering (Taylor and Francis, London, 1981; Energoatomizdat, Moscow, 1985).Google Scholar
  16. 16.
    Yu. A. Aleksandrov, E. I. Sharapov, and L. Cher, Diffraction Methods in Neutron Physics (Energoizdat, Moscow, 1981) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. Khrushchinsky
    • 1
  • S. A. Kuten
    • 1
  • K. A. Viarenich
    • 1
  • P. A. Speransky
    • 2
  1. 1.Research Institute for Nuclear ProblemsBelarusian State UniversityMinskRepublic of Belarus
  2. 2.Department for Nuclear and Radiation Safety of the Ministry for Emergency Situations of the Republic of BelarusMinskRepublic of Belarus

Personalised recommendations