Physics of Particles and Nuclei Letters

, Volume 13, Issue 3, pp 363–369 | Cite as

Response of timepix detector with GaAs:Cr and Si sensor to heavy ions

  • S. M. Abu Al Azm
  • G. Chelkov
  • D. Kozhevnikov
  • A. Guskov
  • A. Lapkin
  • A. Leyva Fabelo
  • P. Smolyanskiy
  • A. Zhemchugov
Methods of Physical Experiment

Abstract

The response of the Timepix detector to neon ions with kinetic energy 77 and 158.4 MeV has been studied at the cyclotron U-400M of the JINR Flerov Laboratory of Nuclear Reaction. Sensors produced from gallium arsenide compensated by chromium and from silicon are used for these measurements. While in Timepix detector with Si sensor the well-known so-called “volcano effect” observed, in Timepix detector with GaAs:Cr sensor such effect was completely absent. In the work the behavior of the Timepix detector with GaAs:Cr sensor under irradiation with heavy ions is described in comparison with the detector based on Si sensor. Also the possible reason for absence of “volcano” effect in GaAs:Cr detector is proposed.

Keywords

GaAs Bias Voltage Method Phys Nucleus Letter Gallium Arsenide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. I. Ayzenshtat, D. L. Budnitsky, O. B. Koretskaya, V. A. Novikov, L. S. Okaevich, A. I. Potapov, O. P. Tolbanov, A. V. Tyazhev, and A. P. Vorobiev, “GaAs resistor structures for X-ray imaging detectors,” Nucl. Instrum. Methods Phys. Res. A 487, 96–101 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    A. V. Tyazhev, D. L. Budnitsky, O. B. Koretskaya, V. A. Novikov, L. S. Okaevich, A. I. Potapov, O. P. Tolbanov, and A. P. Vorobiev, “GaAs radiation imaging detectors with an active layer thickness up to 1 mm,” Nucl. Instrum. Methods Phys. Res. A 509, 34–39 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    E. Hamann, A. Cecilia, A. Zwerger, A. Fauler, O. Tolbanov, A. Tyazhev, G. Shelkov, H. Graafsma, T. Baumbach, and M. Fiederle, “Characterization of photon counting pixel detectors based on semi-insulating GaAs sensor material,” J. Phys.: Conf. Ser. 425, 062015 (2013).ADSGoogle Scholar
  4. 4.
    X. Llopart, R. Ballabriga, M. Campbell, L. Tlustos, and W. Wong, “Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements,” Nucl. Instrum. Methods Phys. Res. A 581, 485–494 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    L. Tlustos, G. Shelkov, and O. Tolbanov, “Characterisation of a GaAs(Cr) Medipix2 hybrid pixel detector,” Nucl. Instrum. Methods Phys. Res. A 633, 103–107 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    A. Gongadze, A. Zhemchugov, G. Chelkov, D. Kozhevnikov, I. Potrap, M. Demichev, P. Smolyanskiy, R. Abramishvili, S. Kotov, A. P. Butler, P. H. Butler, and S. T. Bell, “Alignment and resolution studies of a MARS CT scanner,” Phys. Part. Nucl. Lett. 12, 725–735 (2015).CrossRefGoogle Scholar
  7. 7.
    C. Granja, J. Jakubek, U. Koster, M. Platkevic, and S. Pospíšil, “Response of the pixel detector timepix to heavy ions,” Nucl. Instrum. Methods Phys. Res. A 633, 155–158 (2011).CrossRefGoogle Scholar
  8. 8.
    S. Hoang, R. Vilalta, L. Pinsky, M. Kroupa, N. Stoffle, and J. Idarraga, “Data analysis of tracks of heavy ion particles in timepix detector,” J. Phys.: Conf. Ser. 523, 012026 (2014).ADSGoogle Scholar
  9. 9.
    A. Butler, P. Butler, S. Bell, G. A. Chelkov, D. V. Dedovich, M. A. Demichev, V. G. Elkin, M. I. Gostkin, S. A. Kotov, D. A. Kozhevnikov, U. G. Kruchonak, A. A. Nozdrin, S. Yu. Porokhovoy, I. N. Potrap, P. I. Smolyanskiy, M. M. Zakhvatkin, and A. S. Zhemchugov, “Measurement of the energy resolution and calibration of hybrid pixel detectors with GaAs:Cr sensor and timepix readout chip,” Phys. Part. Nucl. Lett. 12, 59–73 (2015).CrossRefGoogle Scholar
  10. 10.
    T. Holy, E. Heijne, J. Jakubek, and Z. Vykydal, “Pattern recognition of tracks induced by individual quanta of ionizing radiation in Medipix2 silicon detector,” Nucl. Instrum. Methods Phys. Res. A 591, 287–290 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    J. Bouchami, A. Gutiérrez, T. Holy, A. Houdayera, J. Jakbek, C. Lebela, C. Leroy, J. Macanaa, J.-P. Martina, S. Pospíšil, S. Praka, P. Sabellaa, and C. Teyssiera, “Measurement of pattern recognition efficiency of tracks generated by ionizing radiation in a Medipix2 device,” Nucl. Instrum. Methods Phys. Res. A 633, 187–189 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    V. Kraus, M. Holik, J. Jakubek, M. Kroupa, P. Soukup, and Z. Vykydal, “FITPix fast interface for timepix pixel detectors,” J. Instrum. 6, 01079 (2011).CrossRefGoogle Scholar
  13. 13.
    D. Turecek, T. Holy, J. Jakubek, S. Pospíšil, and Z. Vykydal, “Pixelman: a multi-platform data acquisition and processing software package for Medipix2, Timepix and Medipix3 detectors,” J. Instrum. 6, 01046 (2011).CrossRefGoogle Scholar
  14. 14.
    ROOT data analysis framework. https://rootcernch/Google Scholar
  15. 15.
    J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM?the stopping and range of ions in matter,” Nucl. Instrum. Methods Phys. Res. B 268, 1818–1823 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    C. Leroy and P.-G. Rancoita, Principles of Radiation Interaction in Matter and Detection (World Scientific, Singapore, 2011).CrossRefGoogle Scholar
  17. 17.
    J. Jakubek, “Precise energy calibration of pixel detector working in time-over-threshold mode,” Nucl. Instrum. Methods Phys. Res. A 663, 262–266 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. M. Abu Al Azm
    • 1
  • G. Chelkov
    • 1
  • D. Kozhevnikov
    • 1
  • A. Guskov
    • 1
  • A. Lapkin
    • 1
  • A. Leyva Fabelo
    • 1
    • 3
  • P. Smolyanskiy
    • 1
    • 2
  • A. Zhemchugov
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Saratov State UniversitySaratovRussia
  3. 3.CEADENHavanaCuba

Personalised recommendations