Physics of Particles and Nuclei Letters

, Volume 13, Issue 2, pp 163–168 | Cite as

Evolution of ground state nuclear shapes in tungsten nuclei in terms of interacting boson model

  • A. M. Khalaf
  • A. O. El-Shal
  • M. M. Taha
  • M. A. El-Sayed
Physics of Elementary Particles and Atomic Nuclei. Theory

Abstract

The tungsten nuclei 180–190W are investigated within the framework of the interacting boson model using an intrinsic coherent state formalism. The Hamiltonian operator contains only multipole operators of the subalgebra associated with the dynamical symmetries SU(3) and O(6). The study includes the behavior of potential energy surfaces (BES’s) and critical points in the space of the model parameters to declare the geometric character of the tungsten isotopic chain. Some selected energy levels and reduced E2 transition probabilities B(E2) for each nucleus are calculated to adjust the model parameters by using a computer code PH INT and simulated computer fitting programme to fit the experimental data with the IBM calculation by minimizing the root mean square deviations. The 180–190W isotopes lies in shape transition SU(3)-O(6) region of the IBM such that the lighter isotopes comes very clare to the SU(3) limit, while the behavior ones tend to be near the γ-unstable O(6) limit.

Keywords

Shape Transition Nucleus Letter Nuclear Shape Interact Boson Model Electric Quadrupole Transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Iachello and A. Arima, The Interacting Boson Model (Cambridge Univ. Press, Cambridge, 1987).CrossRefGoogle Scholar
  2. 2.
    A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1975), Vol. 2.MATHGoogle Scholar
  3. 3.
    Interacting Boson-Fermi System, Ed. by R. F. Casten and F. Iachello (Plenum, New york, 1981).Google Scholar
  4. 4.
    P. Cejar, “Landau theory of shape phase transitions in the cranked interacting boson model,” Phys. Rev. Lett. B 90, 112501 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    F. Iachello and N. V. Zamfir, “Quantum phase transitions in mesoscopic systems,” Phys. Rev. Lett. 92, 212501 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    J. Jolie, P. Cejnar, R. F. Casten, S. Heinze, A. Linnemann, and V. Werner, “Triple point of nuclear deformations,” Phys. Lett. A 89, 182502 (2002).CrossRefGoogle Scholar
  7. 7.
    J. M. Arios and J. Dukelsky, and J. E. Gracia-Ramos, “Quantum phase transitions in the interacting boson model: integrability, level repulsion, and level crossing,” Phys. Rev. Lett. 91, 162502 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    F. Iachello, “Dynamic symmetries at the critical point,” Phys. Rev. Lett. 85, 3580 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    F. Iachello, “Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition,” Phys. Rev. Lett. 87, 052502 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    P. S. Turner and D. J. Rowe, “Phase transitions and quasidynamical symmetry in nuclear collective models. II. The spherical vibrator to gamma-soft rotor transition in an SO (5)-invariant Bohr model,” Nucl. Phys. A 756, 333 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    J. M. Arias, C. E. Alonso, A. Vitturi, J. E. Garcia-Ramos, J. Dukelsky, and A. Frank, “U(5)-O(6) transition in the interacting boson model and the E(5) critical point symmetry,” Phys. Rev. C 68, 041302.R—041302-4R (2003).ADSCrossRefGoogle Scholar
  12. 12.
    D. J. Rowe, “Phase transitions and quasidynamical symmetry in nuclear collective models: I. The U(5)-O(6) phase transitions in the IBM,” Nucl. Phys. A 745, 47–78 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    P. S. Turner and D. J. Rowe, “Phase transitions and quasidynamical symmetry in nuclear collective models: II. The spherical vibrator to gamma-soft rotor transitions in an SO(5)-invariant Bohr model,” Nucl. Phys. A 756, 333–355 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    V. Hellemans, P. van Isacker, S. de Baerdemacker, and K. Heyde, “Phase transition in the configuration mixed interacting boson model, U(5)-O(6) mixing,” Acta Phys. Polon. B 38, 1599–1603 (2007).ADSGoogle Scholar
  15. 15.
    A. M. Khalaf and T. M. Awad, “A theoretical description of U(5)-SU(3) nuclear shape transitions in the interacting boson model,” Prog. Phys. 1, 7–11 (2013).Google Scholar
  16. 16.
    A. M. Khalaf, H. S. Hamdy, and M. M. El Sawy, “Nuclear shape transition using interacting boson model with the intrinsic coherent state,” Prog. Phys. 3, 44–51 (2013).Google Scholar
  17. 17.
    X. L. Yu, Liang-Zhu Mu, and Haiqing Wei, “Approach to the rotation driven vibrational to axially rotational shape transition along the yrast line of a nucleus,” Phys. Lett. B 633, 49–53 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    G. Rosensteel and D. J. Rowe, “Phase transition and quasidynamical symmetry in nuclear collective models: III. The U(5) to SU(3) phase transition in the IBM,” Nucl. Phys. A 759, 92–128 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    F. Iachello, “Phase transitions in angle variables,” Phys. Rev. Lett. 91, 132502 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    D. Bonatsos, D. Lenis, D. Petrellis, and P. A. Terziev, “Z (5): critical point symmetry for the prolate to oblate nuclear shape phase transition,” Phys. Lett. B 588, 172 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    J. P. Gupta, “The nuclear structure of 182–186W in IBM-1,” in Proceedings of the International Symposium on Nuclear Physics, 2009.Google Scholar
  22. 22.
    S. Abu Mosleh and O. Scholten, “A description of oddmass w-isotopes in the interacting boson-fermion model,” Nucl. Phys. A 878, 37–48 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    P. Navratil, B. R. Barrentt, and J. Dobes, “M1 properties of tungsten isotopes in the interacting boson model-2,” Phys. Rev. C 53, 2794 (1996).ADSCrossRefGoogle Scholar
  24. 24.
    J. N. Ginocchio and M. W. Kirson, “An intrinsic state for the interacting boson model and its relationship to the Bohr-Mottelson model,” Nucl. Phys. A 350, 31 (1980).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    K. Hara and Y. Sun, “Projected shell model and highspin spectroscopy,” Int. J. Mod. Phys. E 4, 637 (1995).ADSCrossRefGoogle Scholar
  26. 26.
    R. F. Casten, Nuclear Structure from a Simple Perspective. Thomson Learning (Oxford Univ. Press, 1990).Google Scholar
  27. 27.
    O. Scholten, Computer Code PHINT (KVI, Groningen, The Netherlands, 1980).Google Scholar
  28. 28.
    Brookhaven National Nuclear Data Center NNDC. http://www.nndc.bnl.gov/

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. M. Khalaf
    • 1
  • A. O. El-Shal
    • 2
  • M. M. Taha
    • 2
  • M. A. El-Sayed
    • 2
  1. 1.Physics Department, Faculty of ScienceAl-Azhar UniversityCairoEgypt
  2. 2.Mathematics and Theoretical Physics Department, Nuclear Research CenterAtomic Energy AuthorityCairoEgypt

Personalised recommendations