Physics of Particles and Nuclei Letters

, Volume 13, Issue 1, pp 32–37 | Cite as

On evolution of the universe

Physics of Elementary Particles and Atomic Nuclei. Theory

Abstract

We consider the model of evolution of the Universe where the Big Bang is regarded as an explosion of a photon superstar. The inflationary epoch is not necessary in the model. The model describes the fundamental phenomena observed: the Universe is expanding at an increasing rate, it is homogeneous and isotropic and contains no antimatter, and its metrics is almost flat.

Keywords

Black Hole Dark Matter Dark Energy Nucleus Letter Energy Momentum Tensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Weinberg, Cosmology (Oxford Univ. Press, Oxford, 2008; URSS, Moscow, 2013).MATHGoogle Scholar
  2. 2.
    D. A. Slavnov, “Possibility of reconciling quantum mechanics with general relativity theory,” Theor. Math. Phys. 171, 848 (2012).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    D. A. Slavnov, “Measurements and mathematical formalism of quantum mechanics,” Phys. Part. Nucl. 38, 147 (2007).CrossRefGoogle Scholar
  4. 4.
    D. A. Slavnov, “The locality problem in quantum measurements,” Phys. Part. Nucl. 41, 149 (2010).CrossRefGoogle Scholar
  5. 5.
    D. A. Slavnov, “Necessary and sufficient postulates of quantum mechanics,” Theor. Math. Phys. 142, 431 (2005).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    D. A. Slavnov, “The possibility of reconciling quantum mechanics with classical probability theory,” Theor. Math. Phys. 149, 1690 (2006).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    D. A. Slavnov, “Locality problem in quantum theory,” Theor. Math. Phys. 155, 789 (2008).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    J. C. Dixmier, C*-algebras (North-Holland, Amsterdam, 1977).MATHGoogle Scholar
  9. 9.
    D. A. Slavnov, “Locality and time irreversibility in quantum processes,” Theor. Math. Phys. 179, 627 (2014).CrossRefMATHGoogle Scholar
  10. 10.
    M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Frontiers in Physics (Westview, New York, 1995).Google Scholar
  11. 11.
    J. Klaers, J. Schmitt, F. Wewinger, and M. Weitz, “Bose–Einstein condensation of photons in an optical microcavity,” Nature 468, 545–548 (2010).CrossRefADSGoogle Scholar
  12. 12.
    P. Kirton and J. Keeling, “Nonequilibrium model of photon condensation,” Phys. Rev. Lett. 111, 100404 (2013).CrossRefADSGoogle Scholar
  13. 13.
    A. Kruchkov, “Bose-Einstein condensation of light in a cavity,” Phys. Rev. A 89, 033862 (2014).CrossRefADSGoogle Scholar
  14. 14.
    L. S. Ryder, Quantum Field Theory (Cambridge Univ. Press, Cambridge, 1996; Platon, Volgograd, 1998).CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations