Physics of Particles and Nuclei Letters

, Volume 12, Issue 4, pp 536–541 | Cite as

Experimental search for the singlet metastable deuteron in the radiative n-p capture

  • S. B. Borzakov
  • N. A. Gundorin
  • Yu. N. Pokotilovski
Physics of Elementary Particles and Atomic Nuclei. Experiment


We performed an experimental search for the bound state singlet deuteron predicted in some microscopic calculations. The predicted energy of this level is in vicinity of the deuteron disintegration threshold. This state should manifest itself in two-photon \(^3 \tilde S_1 \to ^1 S_0 \to ^3 S_1\) transition following thermal neutron capture by protons. The experiment consists in the search for the second gamma-ray in the cascade through a high statistics measurement of γ-ray spectra after thermal neutron capture by hydrogen nuclei. The upper limit 15 μb is obtained for the cross section of the singlet deuteron production with the bound energy in the range 25–125 keV.


Nucleus Letter Nucleon Nucleon Radiative Capture Gamma Quantum Deuteron Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Landau and E. M. Lifshits, Quantum Mechanics. Nonrelativistic Theory (Pergamon, Oxford, 1977).Google Scholar
  2. 2.
    V. L. Lyuboshitz and V. V. Lyuboshitz, “Sign of the singlet (np)-scattering length, neutron radiative capture by the proton and problem of the virtual level of the (np) system,” Few Body Syst. 50, 371 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    V. A. Babenko and N. M. Petrov, “Evaluation of the neutron-proton low-energy scattering parameters in the approximation depend on the shape parameter from current experimental data at low energies,” Phys. At. Nucl. 73, 1545 (2010).CrossRefGoogle Scholar
  4. 4.
    M. H. Ross and G. L. Shaw, “Scattering length and effective range theory for multichannel processes,” Ann. Phys. (N.Y.) 9, 391 (1960).ADSCrossRefGoogle Scholar
  5. 5.
    M. Goldberger and K. Watson, Collision Theory (Wiley, New York, London, Sydney, 1961).Google Scholar
  6. 6.
    H. A. Bethe and P. Morrison, Elementary Nuclear Theory (Wiley, New York, Chapman Hall, London, 1956).MATHGoogle Scholar
  7. 7.
    A. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Scattering, Reactions and Decay in Nonrelativistic Quantum Mechanics (Israel Program for Scientific Translations, Jerusalem, 1969).Google Scholar
  8. 8.
    S. T. Ma, “Interpretation of the virtual level of the deuteron,” Rev. Mod. Phys. 25, 853 (1953).ADSCrossRefMATHGoogle Scholar
  9. 9.
    Encyclopedia of Physics, Vol. 39: Structure of Atomic Nuclei, Ed. by S. Flügge (Springer, Berlin, Gottingen, Heidelberg, 1957).Google Scholar
  10. 10.
    V. de Alfaro and T. Regge, Potential Scattering (North Holland, Amsterdam, 1965).MATHGoogle Scholar
  11. 11.
    S. B. Borzakov, “The interaction of the low energy neutrons with protons and possibility of the existence of the resonance with Jπ = 0+,” JINR Commun. P15-93029 (Dubna, 1989).Google Scholar
  12. 12.
    S. B. Borzakov, “NN-interaction in the 1 S 0 state: is there a virtual level or dibarion resonance?,” Phys. At. Nucl. 57, 517 (1994).Google Scholar
  13. 13.
    A. A. Bergman, A. I. Isakov, Yu. P. Popov, and F. L. Shapiro, Sov. Phys. JETP 6, 6 (1957).ADSGoogle Scholar
  14. 14.
    A. N. Ivanov, M. Cargneli, M. Farber, H. Fuhrmann, V. A. Ivanova, J. Marton, N. I. Troitskaya, and J. Zmeskal, “Quantum field theoretic model of metastable resonant spin-singlet state of the np,” arXiv:nuclth/0407079.Google Scholar
  15. 15.
    K. Maltman and N. Isgur, “Nuclear physics and the quark model: six quarks with chromodynamics,” Phys. Rev. D: Part. Fields 29, 952 (1984).ADSCrossRefGoogle Scholar
  16. 16.
    T. Yamazaki, Y. Kuramashi, and A. Ukawa, “Two-nucleon bound states in quenched lattice QCD,” Phys. Rev. D: Part. Fields 84, 054506 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    R. W. Hackenburg, “Dibarion amplitudes for the lowenergy neutron-proton electromagnetic interaction,” Report BNL No. 77482-2007-IR (Brookhaven National Laboratory, 2007).Google Scholar
  18. 18.
    R. W. Hackenburg, “Low-energy neutron-proton interaction and the deuterons as dressed dibarions: an empirical approach,” Report BNL No. 77483-2007-JA (Brookhaven National Laboratory, 2007).Google Scholar
  19. 19.
    E. I. Sharapov, “Neutron radiative capture by lightest nuclei,” Phys. Part. Nucl. 12, 962 (1981).Google Scholar
  20. 20.
    B. L. Cohen, E. C. May, and T. M. O’Keefe, “Detection of the singlet deuteron (d) and the reaction Be9(p, d)Be8,” Phys. Rev. Lett. 18, 962 (1967).ADSCrossRefGoogle Scholar
  21. 21.
    B. L. Cohen, E. C. May, T. M. O’Keefe, and C. L. Fink, “Singlet deuterons (d*) from (p, d) reactions,” Phys. Rev. 179, 962 (1969).ADSCrossRefGoogle Scholar
  22. 22.
    W. Bohne, M. Hagen, H. Homeyer, H. Lettau, K. H. Maier, H. Morgenstern, and J. Scheer, Phys. Rev. Lett. 24, 1028 (1970).ADSCrossRefGoogle Scholar
  23. 23.
    O. V. Bochkarev, A. A. Korsheninnikov, E. A. Kuzmin, I. G. Mukha, A. A. Ogloblin, L. V. Chulkov, and G. B. Yan’kov, “Three-body decay of the 2+ state of nuclei 6He, 6Li, and 6Be,” Sov. J. Nucl. Phys. 46, 7 (1987).Google Scholar
  24. 24.
    N. Feather, “Properties of a hypothetical di-neutron,” Nature 162, 213 (1948).ADSCrossRefGoogle Scholar
  25. 25.
    A. Spyrou, Z. Kohley, D. Basin, B. A. Brown, G. Christian, P. A. De Young, J. E. Fink, N. Frank, E. Lundenberg, S. Mosby, W. A. Peters, A. Schiller, J. K. Smith, J. Snyder, M. J. Strongman, M. Thoennessen, and A. Volya, “First observation of the dineutron ground state decay 16Be,” Phys. Rev. Lett. 108, 102501 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    F. M. Marques et al., “Detection of neutron clasters,” Phys. Rev. C 65, 044006 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    B. G. Novatskii, E. Yu. Nikolskii, S. B. Sakuta, and D. N. Stepanov, “The possible observation of the light neutral nuclei in the fission of 238U by α-particles,” JETP Lett. 96, 310 (2012).ADSGoogle Scholar
  28. 28.
    G. N. Dudkin, A. A. Garapatskii, and V. N. Padalko, “Arguments for detecting octaneutrons in cluster decay of 252Cf nuclei,: arXiv:nucl-ex/1306.4072.Google Scholar
  29. 29.
    S. B. Borzakov, N. A. Gundorin, L. B. Pikelner, N. V. Rebrova, and K. V. Zhdanova, “The search for the singlet deuteron in the radiative capture of the thermal neutrons by protons,” in Proceedings of International Seminar on Interaction of Neutrons with Nuclei ISINN-16, Dubna, June 11–14, 2008 (Dubna, Russia, 2009).Google Scholar
  30. 30.
    J. Andrzejewski, N. A. Gundorin, I. L. Karpikhin, L. Lason, G. A. Lobov, D. V. Matveev, and L. B. Pikelner, “Nature of the parity violation in interaction of neutrons with lead,” Phys. At. Nucl. 67, 1257 (2004).CrossRefGoogle Scholar
  31. 31.
    S. B. Borzakov, N. A. Gundorin, and Yu. N. Pokotilovski, “Experimental search for the singlet metastable deuteron in the radiative n-p capture,” arXiv:nucl-ex/1308.1783.Google Scholar
  32. 32.
    V. B. Zlokazov, “Method for an automatic peak search in gamma-ray spectra,” Nucl. Instrum. Methods Phys. Res. 199, 509 (1982).ADSCrossRefGoogle Scholar
  33. 33.
  34. 34.
    G. Erdman and W. Soyka, The Gamma Rays of the Radionuclides (Verlag Chemie, Weinheim, New York, 1979).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. B. Borzakov
    • 1
    • 2
  • N. A. Gundorin
    • 1
  • Yu. N. Pokotilovski
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.University “Dubna”, DubnaMoscow regionRussia

Personalised recommendations