Physics of Particles and Nuclei Letters

, Volume 12, Issue 4, pp 637–644 | Cite as

Instrumental neutron activation analysis of soil and sediment samples from Siwa Oasis, Egypt

  • Wael M. Badawy
  • Khaled Ali
  • Hussein M. El-Samman
  • Marina V. Frontasyeva
  • Svetlana F. Gundorina
  • Octavian G. Duliu
Radiobiology, Ecology and Nuclear Medicine

Abstract

Instrumental neutron activation analysis was used to study geochemical peculiarities of the Siwa Oasis in the Western Egyptian Desert. A total of 34 elements were determined in soil and sediment samples (Na, Mg, Al, Cl, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Zr, Sb, I, Cs, Ba, La, Ce, Nd, Eu, Tb, Dy, Tm, Yb, Hf, Ta, Th, and U). For data interpretation Cluster analysis was applied. Comparison with the available literature data was carried out.

Keywords

Instrumental neutron activation analysis soil sediments Siwa Oasis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Said, The Geology of Egypt (Elsevier, Amsterdam, 1962).Google Scholar
  2. 2.
    I. A-S. Hussein, M. E-G. Ibrahim, and M. A-H. Mahmoud, “Studies of characteristics of water, soil and plants of the Siwa oasis, Egypt,” Int. J. Environ. Stud. 40, 299 (1992).CrossRefGoogle Scholar
  3. 3.
    H. A. M. Ibrahim and G. E. Kamh, “Geoenvironmental studies on conservation of archaeological sites at Siwa oasis, Egypt,” Environ. Geol. 49, 511 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    T. Rabeh, “Using 3-D magnetic modeling to evaluate subsurface structures of the Siwa oasis, Western desert, Egypt,” Sci. Chin. Earth Sci. 55, 279 (2012).CrossRefGoogle Scholar
  5. 5.
    G. P. Nabhan, “Agrobiodiversity change in a Saharan desert oasis, 1919–2006: historic shifts in Tasiwit (Berber) and Bedouin crop inventories of Siwa, Egypt,” Econ. Bot. 61, 31 (2007).CrossRefGoogle Scholar
  6. 6.
    IAEA-TECDOC-1415, Soil Sampling for Environmental Contaminants (2004), p. 12.Google Scholar
  7. 7.
    M. V. Frontasyeva, “Neutron activation analysis for the life sciences. A review,” Phys. Part. Nucl. 42, 223 (2011). www.springerlink.com/content/f836723234434m27 CrossRefGoogle Scholar
  8. 8.
    S. S. Pavlov, A. Yu. Dmitriev, I. A. Chepurchenko, and M. V. Frontasyeva, “Automation system for measurement of gamma-ray spectra of induced activity for neutron activation analysis at the reactor IBRr-2 of Frank Laboratory of neutron physics at the Joint Institute for Nuclear Research,” Phys. Part. Nucl. Lett. (accepted).Google Scholar
  9. 9.
    J. C. Davies, Statistics and Data Analysis in Geology (Wiley, New York, 2003).Google Scholar
  10. 10.
    S. Taylor and S. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1991).Google Scholar
  11. 11.
    K. C. Condie, “Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales,” Chem. Geol. 104, 1 (1993).CrossRefGoogle Scholar
  12. 12.
    P. L. Gormet et al., “The North American shale composit: its composition, major, and trace element characteristics,” Geochim. Cosmochim. Acta 48, 2469 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    A. P. Vinogradov, The Geochemistry of Rare and Dispersed Chemical Elements in Soil (Consultants Bureau, New York, 1959).Google Scholar
  14. 14.
    O. G. Duliu, E. Steinnes, and M. V. Frontasyeva, in press.Google Scholar
  15. 15.
    M. R. Bhatia and K. A. W. Crook, “Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins,” Contribut. Mineral. Petrol. 92, 181 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    X. X. Gu, J. M. Liu, M. H. Zheng, J. X. Tang, and L. Qi, “Provenance and tectonic setting of the proterozoic turbidites in Hunan, South China: geochemical evidence,” J. Sedim. Res. 72, 393 (2002).CrossRefGoogle Scholar
  17. 17.
    W. Wang, C. F. Fukun, R. Hu, Y. Chu, and Y. Z. Yang, “Provenance and tectonic setting of neoproterozoic sedimentary sequences in the South China Block: evidence from detrital zircon ages and Hf-Nd isotopes,” Int. J. Earth Sci. 101, 1723 (2012).CrossRefGoogle Scholar
  18. 18.
    R. L. Cullers, “The chemical signature of source rocks in size fractions of holocene stream sediment derived from metamorphic rocks in the Wet Mountains region, Colorado, USA,” Chem. Geol. 113, 327 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Wael M. Badawy
    • 1
  • Khaled Ali
    • 2
  • Hussein M. El-Samman
    • 3
  • Marina V. Frontasyeva
    • 4
  • Svetlana F. Gundorina
    • 4
  • Octavian G. Duliu
    • 5
  1. 1.Nuclear Research Center, Radiation Protection & Civil Defense Dept.Egyptian Atomic Energy Authority (EAEA)Abu ZaabalEgypt
  2. 2.Faculty of Science, Radiation Physics Dept.South Valley UniversityQenaEgypt
  3. 3.Faculty of Science, Department of PhysicsMenoufia UniversityShibin El-koomEgypt
  4. 4.Joint Institute for Nuclear ResearchDubnaRussia
  5. 5.Department of Structure of Matter, Earth and Atmospheric Physics and AstrophysicsUniversity of BucharestMagurele (Ilfov)Romania

Personalised recommendations