Skip to main content
Log in

Self-similarity of hard cumulative processes in fixed target experiment for BES-II at STAR

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Search for signatures of phase transition in Au + Au collisions is in the heart of the heavy ion program at RHIC. Systematic study of particle production over a wide range of collision energy revealed new phenomena such as the nuclear suppression effect expressed by nuclear modification factor, the constituent quark number scaling for elliptic flow, the “ridge effect” in Δϕ-Δη fluctuations etc. To determine the phase boundaries and location of the critical point of nuclear matter the Beam Energy Scan (BES-I) program at RHIC has been suggested and performed by STAR and PHENIX Collaborations. The obtained results shown that the program (BES-II) should be continued. In this paper a proposal to use hard cumulative processes in BES Phase-II program is outlined. Selection of the cumulative events is assumed to enrich data sample by new type of collisions characterized by higher energy density and more compressed matter. This would allow finding clearer signatures of phase transition, location of a critical point and studying extreme conditions in heavy ion collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Arsene et al. (BRAHMS Collab.), “Quark-gluon plasma and the color glass condensate at RHIC? The perspective from the BRAHMS experiment,” Nucl. Phys. A 757, 1 (2005).

    Article  ADS  Google Scholar 

  2. B. B. Back et al. (PHOBOS Collab.), “The PHOBOS perspective on discoveries at RHIC,” Nucl. Phys. A 757, 28 (2005).

    Article  ADS  Google Scholar 

  3. J. J. Adams et al. (STAR Collab.), “Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions,” Nucl. Phys. A 757, 102 (2005).

    Article  ADS  Google Scholar 

  4. K. Adcox et al. (PHENIX Collab.), “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration,” Nucl. Phys. A 757, 184 (2005).

    Article  ADS  Google Scholar 

  5. H. Caines, (for the STAR Collab.), “The RHIC beam energy scan-STAR’S perspective,” in Proceedings for the Rencontres de Moriond 2009, QCD session, arXiv: 0906. 0305v1 [nucl-ex], 1 June, 2009.

  6. B. I. Abelev et al. (STAR Collab.), “Experimental study of the QCD phase diagram and search for the critical point: selected arguments for the Run-10 beam energy scan,” June 4, 2009, http://drupal.star.bnl.gov/STAR/starnotes/public/sn0493

    Google Scholar 

  7. M. M. Aggarwal et al. (STAR Collab.), “An experimental exploration of the QCD phase diagram: The search for the critical point and the onset of deconfinement,” arXiv:1007.2613 [nucl-ex] 15 July, 2010.

    Google Scholar 

  8. STAR Collab. STAR Collaboration Decadal Plan (Brookhaven National Laboratory, Relativistic Heavy Ion Collider, December, 2010), http://www.bnl.gov/npp/docs/STAR-Decadal-Plan-Final%5B1%5D.pdf

  9. Hot and Dense QCD Matter, “A community white paper on the future of relativistic heavy-ion physics in the US,” Unraveling the Mysteries of the Strongly Interacting Quark-Gluon-Plasma, http://www.bnl.gov/npp/.

  10. STAR Collab. Studying the Phase Diagram of QCD Matter at RHIC A STAR white paper summarizing the current understanding and describing future plans, SN0598, June 1, 2014.

  11. PHENIX Collab., The PHENIX Experiment at RHIC, Decadal Plan 2011–2020 (Brookhaven National Laboratory).

  12. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, London, 1971).

    Google Scholar 

  13. H. E. Stanley, “Scaling, universality, and renormalization: Three pillars of modern critical phenomena,” Rev.Mod. Phys. 71, S358 (1999).

    Article  Google Scholar 

  14. A. Hankey and H. E. Stanley, “Systematic application of generalized homogeneous functions to static scaling, dynamic scaling, and universality,” Phys. Rev. B 6, 3515 (1972).

    Article  ADS  Google Scholar 

  15. S. Lübeck, “Universal scaling behavior of non-equilibrium phase transitions,” Int. J. Mod. Phys. B 18, 3977 (2004).

    Article  ADS  Google Scholar 

  16. M. V. Tokarev and I. Zborovský, “Self-similarity of high pT hadron production in cumulative processes and violation of discrete symmetries at small scales (suggestion for experiment),” Phys. Part. Nucl. Lett. 7, 160 (2010).

    Article  Google Scholar 

  17. M. V. Tokarev et al., “Search for signatures of phase transition and critical point in heavy-ion collisions,” Phys. Part. Nucl. Lett. 8, 533 (2011).

    Article  Google Scholar 

  18. M. V. Tokarev and I. Zborovský, “Energy scan in heavyion collisions and search for a critical point,” Phys. At. Nucl. 75, 700 (2012).

    Article  Google Scholar 

  19. I. Zborovský and M. V. Tokarev, “Generalized z-scaling in proton-proton collisions at high energies,” Phys. Rev. D 75, 094008 (2007).

    Article  ADS  Google Scholar 

  20. I. Zborovský and M. V. Tokarev, “New properties of z-scaling: flavor independence and saturation at low z,” Int. J. Mod. Phys. A 24, 1417 (2009).

    Article  ADS  Google Scholar 

  21. M. V. Tokarev and I. Zborovský, “z-scaling as manifestation of symmetry in Nature,” Selected papers of the seminar (2002–2005), “Symmetries and Integrable Systems,” Ed. by A. N. Sysakian (JINR, Dubna, 2006), vol. II, p. 154.

    Google Scholar 

  22. M. V. Tokarev, “z-scaling at RHIC,” Phys. Part. Nucl. Lett. 3, 7 (2006).

    Article  Google Scholar 

  23. M. V. Tokarev, “z-scaling in heavy-ion collisions at the RHIC,” Phys. Part. Nucl. Lett. 4, 676 (2007).

    Article  Google Scholar 

  24. I. Zborovský and M. V. Tokarev, “Energy scan in heavyion collisions and search for a critical point,” Phys. At. Nucl. 7, 700 (2012).

    Google Scholar 

  25. M. V. Tokarev and I. Zborovský, “Self-similarity of pion production in AA collisions at RHIC,” Phys. Part. Nucl. Lett. 7(3), 171 (2010).

    Article  Google Scholar 

  26. M. V. Tokarev (for the STAR Collab.), “High-p T spectra of charged hadrons in Au + Au collisions at √s NN = 9.2 GeV in STAR,” Phys. At. Nucl. 74(5), 799 (2011).

    Article  MathSciNet  Google Scholar 

  27. M. V. Tokarev and I. Zborovský, “Beam energy scan at RHIC and z-scaling,” Nucl. Phys. Proc. Suppl. 245, 231 (2013).

    Article  ADS  Google Scholar 

  28. M. V. Tokarev and I. Zborovský, “Energy loss in heavy ion collisions,” in Proceedings 40th International Symposium on Multiparticle Dynamics (ISMD 2010), 21–25 September, 2010, Antwerp. Belgium, p. 301.

  29. M. V. Tokarev and I. Zborovský, “Self-similarity of hadron production in heavy ion collisions at RHIC,” Nonlin. Phenom. Complex Syst. 12, 459 (2009).

    Google Scholar 

  30. A. M. Baldin, “The physics of relativistic nuclei,” Sov. J. Part. Nucl. 8, 175 (1977).

    ADS  Google Scholar 

  31. V. S. Stavinsky, “Limiting fragmentation of nuclei—cumulative effect,” Sov. J. Part. Nucl. 10, 949 (1979).

    Google Scholar 

  32. G. A. Leksin, “Nuclear scaling. Elementary particles,” in Proceedings of the 3rd Physics School ITEF (Moscow, 1975), no. 2, p. 5; G. A. Leksin, Nuclear Scaling (Moscow,1975), pp. 90.

    Google Scholar 

  33. N. A. Nikiforov et al., “Backward production of pions and kaons in the interaction of 400 GeV protons with nuclei,” Phys. Rev. C 22, 700 (1980).

    Article  ADS  Google Scholar 

  34. O. P. Gavrishchuk et al., “Charged pion backward production in 15–65 GeV proton-nucleus collisions,” Nucl. Phys. A 523, 589 (1991).

    Article  ADS  Google Scholar 

  35. I. M. Belyaev et al., “Production of cumulative pions and kaons in proton-nucleus interactions at energies from 15 to 65 GeV,” Phys. At. Nucl. 56, 1378 (1993).

    Google Scholar 

  36. G. A. Leksin, “Methods for investigating nuclear matter under the conditions characteristic of its transition to quark-gluon plasma,” Phys. At. Nucl. 65(11), 1985 (2002).

    Article  Google Scholar 

  37. N. N. Antonov et al., “Measurement of positive charged particle yields in proton-nucleus interactions at √s NN ≈ 10 GeV and the angle of 35 degree” (“Physics of Fundamental Interactions”, Russian Academy of Science, ITEP, Moscow, Russia, 21–25 November, 2011), http://matras.itep.ru/npd2k11/

    Google Scholar 

  38. V. V. Ammosov, N. N. Antonov, A. A. Baldin, et al., “First measurements of cumulative particle production in proton-nucleus interactions at energy 50∼GeV in the region pT > 1 GeV/c,” Seminar LHEP, JINR, June 6, 2012, Dubna, http://lhe.jinr.ru/seminararchive.shtml/

  39. V. V. Ammosov, N. N. Antonov, A. A. Baldin, et al., “A measurement of the yield of the positive particles escaping at 35° angle from proton interactions with nuclear targets at energy of 50 GeV,” Yad. Fiz. 76, 1275 (2013).

    Google Scholar 

  40. M. V. Tokarev, O. V. Rogachevsky, and T. G. Dedovich, “Scaling features of π0-meson production in high-energy pp collisions,” J. Phys. G: Nucl. Part. Phys. 26, 1671 (2000).

    Article  ADS  Google Scholar 

  41. M. V. Tokarev, “Neutral-meson production in pp collisions at RHIC and QCD test of z-scaling,” Phys. Atom. Nucl. 72, 541 (2009).

    Article  ADS  Google Scholar 

  42. M. V. Tokarev and I. Zborovský, “On self-similarity of top production at Tevatron,” J. Mod. Phys. 3, 815 (2012).

    Article  Google Scholar 

  43. M. V. Tokarev, I. Zborovský, and T. G. Dedovich, “Self-similarity of jet production in pp and pbarp collisions at RHIC, Tevatron and LHC,” Int. J. Mod. Phys. A 27, 1250115 (2012).

    Article  ADS  Google Scholar 

  44. M. V. Tokarev et al., “A-dependence of z-scaling,” Int. J. Mod. Phys. A 16(7), 1281 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tokarev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokarev, M.V., Zborovský, I. & Aparin, A.A. Self-similarity of hard cumulative processes in fixed target experiment for BES-II at STAR. Phys. Part. Nuclei Lett. 12, 221–229 (2015). https://doi.org/10.1134/S1547477115020235

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477115020235

Keywords

Navigation