Physics of Particles and Nuclei Letters

, Volume 12, Issue 1, pp 8–10 | Cite as

Comparison of spin dynamics in the cylindrical and Frenet-Serret coordinate systems

  • A. J. Silenko
Physics of Elementary Particles and Atomic Nuclei. Theory


A comparative analysis of a description of spin dynamics in the cylindrical and Frenet-Serret coordinate systems is carried out. It is shown that these two systems are equivalent. Because of the cylindrical-system reference axes, which do not move relative to stationary detectors, it becomes possible to efficiently use this frame to calculate spin evolution for particles and nuclei in accelerators and storage rings.


Electric Dipole Moment Nucleus Letter Storage Ring Cylindrical Coordinate System Anomalous Magnetic Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. H. Thomas, “The motion of the spinning electron,” Nature 117(2945), 514 (1926); “The kinematics of an electron with an axis,” Philos. Mag. 3 (13), 1 (1927); V. Bargmann, L. Michel, and V. L. Telegdi, “Precession of the polarization of particles moving in a homogeneous electromagnetic field,” Phys. Rev. Lett. 2 (10), 435 (1959).ADSCrossRefGoogle Scholar
  2. 2.
    T. Fukuyama, “Searching for new physics beyond the Standard Model in electric dipole moment,” Int. J. Mod. Phys. A 27(16), 1230015 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    T. Fukuyama, A. J. Silenko, “Derivation of generalized Thomas-Bargmann-Michel-Telegdi equation for a particle with electric dipole moment,” Int. J. Mod. Phys. A 28(29), 1350147 (2013).ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. J. Silenko, “Equation of spin potion in storage rings in the cylindrical coordinate system,” Phys. Rev. ST Accel. Beams 9(3), 034003 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    A. Ya. Silenko, “Quantum-mechanical description of the electromagnetic interaction of relativistic particles with electric and magnetic dipole moments,” Russ. Phys. J. 48(8), 788 (2005).CrossRefMATHGoogle Scholar
  6. 6.
    A. J. Silenko, “Quantum-mechanical description of spin-1 particles with electric dipole moments,” Phys. Rev. D 87(7), 073015 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    A. J. Silenko, “Tensor electric polarizability of the deuteron in storage-ring experiments,” Phys. Rev. C 75(1), 014003 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    A. J. Silenko, “Potential for measurement of the tensor polarizabilities of nuclei in storage rings by the frozen spin method,” Phys. Rev. C 80(4), 044315 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    V. G. Baryshevsky, A. J. Silenko, “Potential for the measurement of the tensor electric and magnetic polarizabilities of the deuteron in storage-ring experiments with polarized beams,” J. Phys. (Conf. Ser.) 295(1), 012034 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    A. J. Silenko, “High precision description and new properties of a spin-1 particle in a magnetic field,” Phys. Rev. D 89(12), 121701 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    G. W. Bennett, et al. (Muon G-2 Collaboration), “Final report of the E821 muon anomalous magnetic moment measurement at BNL,” Phys. Rev. D 73(7), 072003 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations