Skip to main content
Log in

Brane SUSY breaking and inflation: Implications for scalar fields and CMB distortion

  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

I elaborate on a link between the string-scale breaking of supersymmetry that occurs in a class of superstring models and the onset of inflation. The link rests on spatially flat cosmologies supported by a scalar field driven by an exponential potential. If, as in String Theory, this potential is steep enough, under some assumptions that are spelled out in the text the scalar can only climb up as it emerges from an initial singularity. In the presence of another mild exponential, slow-roll inflation is thus injected during the ensuing descent and definite imprints are left in the CMB power spectrum: the quadrupole is systematically reduced and, depending on the choice of two parameters, an oscillatory behavior can also emerge for low multipoles l < 50, in qualitative agreement with WMAP9 and PLANCK data. The experimentally favored value of the spectral index, n s ≈ 0.96, points to a potentially important role for the NS fivebrane, which is unstable in this class of models, in the Early Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Becker, M. Becker, and J. H. Schwarz, String Theory and M-Theory: A Modern Introduction (Cambridge University Press, Cambridge, UK, 2007).

    Google Scholar 

  2. A. Sagnotti, “Open strings and their symmetry groups,” in Proceedings of School Cargese’87 “Non-Perturbative Quantum Field Theory,” Eds. by G. Mack et al. (Pergamon Press, New-York, 1988), p. 521, arXiv:hep-th/0208020; G. Pradisi and A. Sagnotti, “Open string orbifolds,” Phys. Lett. B 216, 59 (1989); P. Horava, “Strings on world sheet orbifolds,” Nucl. Phys. B 327, 461 (1989); P. Horava, “Background duality of open string models,” Phys. Lett. B 231, 251 (1989); M. Bianchi and A. Sagnotti, “On the systematics of open string theories,” Phys. Lett. B 247, 517 (1990); M. Bianchi and A. Sagnotti, “Twist symmetry and open string Wilson lines,” Nucl. Phys. B 361, 519 (1991); M. Bianchi, G. Pradisi, and A. Sagnotti, “Toroidal compactification and symmetry breaking in open string theories,” Nucl. Phys. B 376, 365 (1992); A. Sagnotti, “A note on the Green-Schwarz mechanism in open string theories,” Phys. Lett. B 294, 196 (1992) [arXiv:hep-th/9210127]; E. Dudas, “Theory and phenomenology of type I strings and M-theory,” Class. Quant. Grav. 17, R41 (200) [arXiv:hep-ph/0006190]; C. Angelantonj and A. Sagnotti, “Open strings,” Phys. Rept. 371, 1 (2002) [376, 339(E) (2003)] [arXiv:hep-th/0204089].

    Google Scholar 

  3. J. Polchinski, “Dirichlet branes and Ramond-Ramond charges,” Phys. Rev. Lett. 75, 4724 (1995) [hep-th/9510017].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. E. Witten, “Toroidal compactification without vector structure,” JHEP 9802, 006 (1998) [hep-th/9712028].

    ADS  Google Scholar 

  5. M. Bianchi, G. Pradisi, and A. Sagnotti, in [2].

    Google Scholar 

  6. S. Sugimoto, “Anomaly cancellations in type I D9-D9-bar system and the USp(32) string theory,” Prog. Theor. Phys. 102, 685 (1999) [arXiv:hep-th/9905159].

    Article  ADS  MathSciNet  Google Scholar 

  7. I. Antoniadis, E. Dudas, and A. Sagnotti, “Brane supersymmetry breaking,” Phys. Lett. B. 464, 38 (1999) [arXiv:hep-th/9908023]; C. Angelantonj, “Comments on open-string orbifolds with a non-vanishing B(ab),” Nucl. Phys. B 566, 126 (2000) [arXiv:hep-th/9908064]; G. Aldazabal and A. M. Uranga, “Tachyon-free non-supersymmetric type IIB orientifolds via brane-antibrane systems,” JHEP 9910, 024 (1999) [arXiv:hep-th/9908072]; C. Angelantonj, I. Antoniadis, G. D’Appollonio, E. Dudas, and A. Sagnotti, “Type I vacua with brane supersymmetry breaking,” Nucl. Phys. B 572, 36 (2000) [arXiv:hepth/9911081].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. E. Dudas and J. Mourad, “Consistent gravitino couplings in nonsupersymmetric strings,” Phys. Lett. B 514, 173 (2001) [hep-th/0012071]; G. Pradisi and F. Riccioni, “Geometric couplings and brane supersymmetry breaking,” Nucl. Phys. B. V. 615 P. 33 (2001) [hep-th/0107090].

    Article  ADS  MATH  Google Scholar 

  9. W. Fischler and L. Susskind, “Dilaton tadpoles, string condensates and scale invariance,” Phys. Lett. B 171, 383 (1986); W. Fischler and L. Susskind, “Dilaton Tadpoles, String Condensates And Scale Invariance, 2,” Phys. Lett. B 173, 262 (1986); E. Dudas, M. Nicolosi, G. Pradisi, and A. Sagnotti, “On tadpoles and vacuum redefinitions in string theory,” Nucl. Phys. B 708, 3 (2005) [arXiv:hep-th/0410101]; N. Kitazawa, “Tadpole resummations in string theory,” Phys. Lett. B 660, 415 (2008) [arXiv:0801.1702 [hep-th]].

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Dudas, N. Kitazawa, and A. Sagnotti, “On climbing scalars in string theory,” Phys. Lett. B 694, 80 (2010) [arXiv:1009.0874 [hep-th]].

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Dudas, N. Kitazawa, S. P. Patil, and A. Sagnotti, “CMB imprints of a pre-inflationary climbing phase,” JCAP 1205, 012 (2012) [arXiv:1202.6630 [hep-th]].

    Article  ADS  Google Scholar 

  12. J. J. Halliwell, “Scalar fields in cosmology with an exponential potential,” Phys. Lett. B 185, 341 (1987); L. F. Abbott and M. B. Wise, “Constraints on generalized inflationary cosmologies,” Nucl. Phys. B 244, 541 (1984); D. H. Lyth and E. D. Stewart, “The curvature perturbation in power law (e.g. extended) inflation,” Phys. Lett. B 274, 168 (1992); E. Dudas and J. Mourad, “Brane solutions in strings with broken supersymmetry and dilaton tadpoles,” Phys. Lett. B 486, 172 (2000) [arXiv:hep-th/0004165]; I. P. C. Heard and D. Wands, “Cosmology with positive and negative exponential potentials,” Class. Quant. Grav., 19, 5435 (2002) [arXiv:gr-qc/0206085]; N. Ohta, “Accelerating cosmologies from S-branes,” Phys. Rev. Lett. 91, 061303 (2003) [arXiv:hep-th/0303238]; S. Roy, “Accelerating cosmologies from M/string theory compactifications,” Phys. Lett. B 567, 322 (2003) [arXiv:hep-th/0304084]; P. K. Townsend and M. N. R. Wohlfarth, “Accelerating cosmologies from compactification,” Phys. Rev. Lett. 91, 061302 (2003) [arXiv:hep-th/0303097]; P. K. Townsend and M. N. R. Wohlfarth, “Cosmology as geodesic motion,” Class. Quant. Grav. 21, 5375 (2004) [arXiv:hep-th/0404241]; R. Emparan and J. Garriga, “A note on accelerating cosmologies from compactifications and S-branes,” JHEP 0305, 028 (2003) [arXiv:hep-th/0304124]; J. G. Russo, “Exact solution of scalar-tensor cosmology with exponential potentials and transient acceleration,” Phys. Lett. B 600, 185 (2004) [arXiv:hep-th/0403010]; A. A. Andrianov, F. Cannata, and A. Y. Kamenshchik, “General solution of scalar field cosmology with a (piecewise) exponential potential,” JCAP 1110, 004 (2011) [arXiv:1105.4515 [gr-qc]]; A. A. Andrianov, F. Cannata, and A. Y. Kamenshchik, “Remarks on the general solution for the flat Friedman universe with exponential scalarfield potential and dust,” Phys. Rev. D 86, 107303 (2012) [arXiv:1206.2828 [gr-qc]].

    Article  ADS  MathSciNet  Google Scholar 

  13. E. Dudas and J. Mourad, “Brane solutions in strings with broken supersymmetry and dilaton tadpoles,” Phys. Lett. B 486, 172 (2000) [arXiv:hep-th/0004165].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. F. Lucchin and S. Matarrese, “Power law inflation,” Phys. Rev. D 32, 1316 (1985).

    Article  ADS  Google Scholar 

  15. P. Fré, A. Sagnotti, and A. S. Sorin, “Integrable scalar cosmologies I. Foundations and links with string theory,” Nucl. Phys. B 877, 1028 (2013) [arXiv:1307.1910 [hep-th]].

    Article  ADS  MATH  Google Scholar 

  16. E. Dudas, J. Mourad, and A. Sagnotti, “Charged and uncharged D-branes in various string theories,” Nucl. Phys. B 620, 109 (2002) [arXiv:hep-th/0107081].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. E. A. Bergshoeff and F. Riccioni, “String solitons and T-duality,” JHEP 1105, 131 (2011) [arXiv:1102.0934 [hep-th]]; E. A. Bergshoeff and F. Riccioni, “The D-brane U-scan,” arXiv:1109.1725 [hep-th]; E. A. Bergshoeff, A. Marrani, and F. Riccioni, “Brane orbits,” Nucl. Phys. B 861, 104 (2012) [arXiv:1201.5819 [hep-th]].

    Article  ADS  MathSciNet  Google Scholar 

  18. V. Mukhanov, Physical Foundations of Cosmology (Univ. Pr., Cambridge, UK, 2005); S. Weinberg, Cosmology (Oxford Univ. Pr., Oxford, UK, 2008); D. H. Lyth and A. R. Liddle, The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure (Cambridge Univ. Pr., Cambridge, UK, 2009).

    Book  MATH  Google Scholar 

  19. G. Hinshaw et al. [WMAP Collaboration] “Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results,” Astrophys. J. Suppl. 208, 19 (2013) [arXiv:1212.5226 [astroph.CO]]; C. L. Bennett et al. [WMAP Collaboration] “Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results,” Astrophys. J. Suppl. 208, 20 (2013) [arXiv:1212.5225 [astroph.CO]]; P. A. R. Ade et al. [Planck Collaboration] Planck 2013 Results. I. Overview of Products and Scientific Results, arXiv:1303.5062 [astro-ph.CO].

    Article  ADS  Google Scholar 

  20. N. Kitazawa and A. Sagnotti, in progress.

  21. A. Gruppuso, P. Natoli, F. Paci, F. Finelli, D. Molinari, A. De Rosa, and N. Mandolesi, “Low variance at large scales of WMAP 9 year data,” JCAP 1307, 047 (2013) [arXiv:1304.5493 [astro-ph.CO]].

    Article  ADS  Google Scholar 

  22. S. Ferrara and R. Kallosh, “Creation of matter in the universe and groups of type E7,” JHEP 1112, 096 (2011) [arXiv:1110.4048 [hep-th]].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Sagnotti.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagnotti, A. Brane SUSY breaking and inflation: Implications for scalar fields and CMB distortion. Phys. Part. Nuclei Lett. 11, 836–843 (2014). https://doi.org/10.1134/S1547477114070395

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477114070395

Keywords

Navigation