Physics of Particles and Nuclei Letters

, Volume 11, Issue 7, pp 836–843 | Cite as

Brane SUSY breaking and inflation: Implications for scalar fields and CMB distortion

Article

Abstract

I elaborate on a link between the string-scale breaking of supersymmetry that occurs in a class of superstring models and the onset of inflation. The link rests on spatially flat cosmologies supported by a scalar field driven by an exponential potential. If, as in String Theory, this potential is steep enough, under some assumptions that are spelled out in the text the scalar can only climb up as it emerges from an initial singularity. In the presence of another mild exponential, slow-roll inflation is thus injected during the ensuing descent and definite imprints are left in the CMB power spectrum: the quadrupole is systematically reduced and, depending on the choice of two parameters, an oscillatory behavior can also emerge for low multipoles l < 50, in qualitative agreement with WMAP9 and PLANCK data. The experimentally favored value of the spectral index, n s ≈ 0.96, points to a potentially important role for the NS fivebrane, which is unstable in this class of models, in the Early Universe.

Keywords

String Theory Open String Nucleus Letter Wilkinson Microwave Anisotropy Probe String Scale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Becker, M. Becker, and J. H. Schwarz, String Theory and M-Theory: A Modern Introduction (Cambridge University Press, Cambridge, UK, 2007).Google Scholar
  2. 2.
    A. Sagnotti, “Open strings and their symmetry groups,” in Proceedings of School Cargese’87 “Non-Perturbative Quantum Field Theory,” Eds. by G. Mack et al. (Pergamon Press, New-York, 1988), p. 521, arXiv:hep-th/0208020; G. Pradisi and A. Sagnotti, “Open string orbifolds,” Phys. Lett. B 216, 59 (1989); P. Horava, “Strings on world sheet orbifolds,” Nucl. Phys. B 327, 461 (1989); P. Horava, “Background duality of open string models,” Phys. Lett. B 231, 251 (1989); M. Bianchi and A. Sagnotti, “On the systematics of open string theories,” Phys. Lett. B 247, 517 (1990); M. Bianchi and A. Sagnotti, “Twist symmetry and open string Wilson lines,” Nucl. Phys. B 361, 519 (1991); M. Bianchi, G. Pradisi, and A. Sagnotti, “Toroidal compactification and symmetry breaking in open string theories,” Nucl. Phys. B 376, 365 (1992); A. Sagnotti, “A note on the Green-Schwarz mechanism in open string theories,” Phys. Lett. B 294, 196 (1992) [arXiv:hep-th/9210127]; E. Dudas, “Theory and phenomenology of type I strings and M-theory,” Class. Quant. Grav. 17, R41 (200) [arXiv:hep-ph/0006190]; C. Angelantonj and A. Sagnotti, “Open strings,” Phys. Rept. 371, 1 (2002) [376, 339(E) (2003)] [arXiv:hep-th/0204089].Google Scholar
  3. 3.
    J. Polchinski, “Dirichlet branes and Ramond-Ramond charges,” Phys. Rev. Lett. 75, 4724 (1995) [hep-th/9510017].ADSCrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    E. Witten, “Toroidal compactification without vector structure,” JHEP 9802, 006 (1998) [hep-th/9712028].ADSGoogle Scholar
  5. 5.
    M. Bianchi, G. Pradisi, and A. Sagnotti, in [2].Google Scholar
  6. 6.
    S. Sugimoto, “Anomaly cancellations in type I D9-D9-bar system and the USp(32) string theory,” Prog. Theor. Phys. 102, 685 (1999) [arXiv:hep-th/9905159].ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    I. Antoniadis, E. Dudas, and A. Sagnotti, “Brane supersymmetry breaking,” Phys. Lett. B. 464, 38 (1999) [arXiv:hep-th/9908023]; C. Angelantonj, “Comments on open-string orbifolds with a non-vanishing B(ab),” Nucl. Phys. B 566, 126 (2000) [arXiv:hep-th/9908064]; G. Aldazabal and A. M. Uranga, “Tachyon-free non-supersymmetric type IIB orientifolds via brane-antibrane systems,” JHEP 9910, 024 (1999) [arXiv:hep-th/9908072]; C. Angelantonj, I. Antoniadis, G. D’Appollonio, E. Dudas, and A. Sagnotti, “Type I vacua with brane supersymmetry breaking,” Nucl. Phys. B 572, 36 (2000) [arXiv:hepth/9911081].ADSCrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    E. Dudas and J. Mourad, “Consistent gravitino couplings in nonsupersymmetric strings,” Phys. Lett. B 514, 173 (2001) [hep-th/0012071]; G. Pradisi and F. Riccioni, “Geometric couplings and brane supersymmetry breaking,” Nucl. Phys. B. V. 615 P. 33 (2001) [hep-th/0107090].ADSCrossRefMATHGoogle Scholar
  9. 9.
    W. Fischler and L. Susskind, “Dilaton tadpoles, string condensates and scale invariance,” Phys. Lett. B 171, 383 (1986); W. Fischler and L. Susskind, “Dilaton Tadpoles, String Condensates And Scale Invariance, 2,” Phys. Lett. B 173, 262 (1986); E. Dudas, M. Nicolosi, G. Pradisi, and A. Sagnotti, “On tadpoles and vacuum redefinitions in string theory,” Nucl. Phys. B 708, 3 (2005) [arXiv:hep-th/0410101]; N. Kitazawa, “Tadpole resummations in string theory,” Phys. Lett. B 660, 415 (2008) [arXiv:0801.1702 [hep-th]].ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    E. Dudas, N. Kitazawa, and A. Sagnotti, “On climbing scalars in string theory,” Phys. Lett. B 694, 80 (2010) [arXiv:1009.0874 [hep-th]].ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    E. Dudas, N. Kitazawa, S. P. Patil, and A. Sagnotti, “CMB imprints of a pre-inflationary climbing phase,” JCAP 1205, 012 (2012) [arXiv:1202.6630 [hep-th]].ADSCrossRefGoogle Scholar
  12. 12.
    J. J. Halliwell, “Scalar fields in cosmology with an exponential potential,” Phys. Lett. B 185, 341 (1987); L. F. Abbott and M. B. Wise, “Constraints on generalized inflationary cosmologies,” Nucl. Phys. B 244, 541 (1984); D. H. Lyth and E. D. Stewart, “The curvature perturbation in power law (e.g. extended) inflation,” Phys. Lett. B 274, 168 (1992); E. Dudas and J. Mourad, “Brane solutions in strings with broken supersymmetry and dilaton tadpoles,” Phys. Lett. B 486, 172 (2000) [arXiv:hep-th/0004165]; I. P. C. Heard and D. Wands, “Cosmology with positive and negative exponential potentials,” Class. Quant. Grav., 19, 5435 (2002) [arXiv:gr-qc/0206085]; N. Ohta, “Accelerating cosmologies from S-branes,” Phys. Rev. Lett. 91, 061303 (2003) [arXiv:hep-th/0303238]; S. Roy, “Accelerating cosmologies from M/string theory compactifications,” Phys. Lett. B 567, 322 (2003) [arXiv:hep-th/0304084]; P. K. Townsend and M. N. R. Wohlfarth, “Accelerating cosmologies from compactification,” Phys. Rev. Lett. 91, 061302 (2003) [arXiv:hep-th/0303097]; P. K. Townsend and M. N. R. Wohlfarth, “Cosmology as geodesic motion,” Class. Quant. Grav. 21, 5375 (2004) [arXiv:hep-th/0404241]; R. Emparan and J. Garriga, “A note on accelerating cosmologies from compactifications and S-branes,” JHEP 0305, 028 (2003) [arXiv:hep-th/0304124]; J. G. Russo, “Exact solution of scalar-tensor cosmology with exponential potentials and transient acceleration,” Phys. Lett. B 600, 185 (2004) [arXiv:hep-th/0403010]; A. A. Andrianov, F. Cannata, and A. Y. Kamenshchik, “General solution of scalar field cosmology with a (piecewise) exponential potential,” JCAP 1110, 004 (2011) [arXiv:1105.4515 [gr-qc]]; A. A. Andrianov, F. Cannata, and A. Y. Kamenshchik, “Remarks on the general solution for the flat Friedman universe with exponential scalarfield potential and dust,” Phys. Rev. D 86, 107303 (2012) [arXiv:1206.2828 [gr-qc]].ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    E. Dudas and J. Mourad, “Brane solutions in strings with broken supersymmetry and dilaton tadpoles,” Phys. Lett. B 486, 172 (2000) [arXiv:hep-th/0004165].ADSCrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    F. Lucchin and S. Matarrese, “Power law inflation,” Phys. Rev. D 32, 1316 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    P. Fré, A. Sagnotti, and A. S. Sorin, “Integrable scalar cosmologies I. Foundations and links with string theory,” Nucl. Phys. B 877, 1028 (2013) [arXiv:1307.1910 [hep-th]].ADSCrossRefMATHGoogle Scholar
  16. 16.
    E. Dudas, J. Mourad, and A. Sagnotti, “Charged and uncharged D-branes in various string theories,” Nucl. Phys. B 620, 109 (2002) [arXiv:hep-th/0107081].ADSCrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    E. A. Bergshoeff and F. Riccioni, “String solitons and T-duality,” JHEP 1105, 131 (2011) [arXiv:1102.0934 [hep-th]]; E. A. Bergshoeff and F. Riccioni, “The D-brane U-scan,” arXiv:1109.1725 [hep-th]; E. A. Bergshoeff, A. Marrani, and F. Riccioni, “Brane orbits,” Nucl. Phys. B 861, 104 (2012) [arXiv:1201.5819 [hep-th]].ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    V. Mukhanov, Physical Foundations of Cosmology (Univ. Pr., Cambridge, UK, 2005); S. Weinberg, Cosmology (Oxford Univ. Pr., Oxford, UK, 2008); D. H. Lyth and A. R. Liddle, The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure (Cambridge Univ. Pr., Cambridge, UK, 2009).CrossRefMATHGoogle Scholar
  19. 19.
    G. Hinshaw et al. [WMAP Collaboration] “Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results,” Astrophys. J. Suppl. 208, 19 (2013) [arXiv:1212.5226 [astroph.CO]]; C. L. Bennett et al. [WMAP Collaboration] “Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results,” Astrophys. J. Suppl. 208, 20 (2013) [arXiv:1212.5225 [astroph.CO]]; P. A. R. Ade et al. [Planck Collaboration] Planck 2013 Results. I. Overview of Products and Scientific Results, arXiv:1303.5062 [astro-ph.CO].ADSCrossRefGoogle Scholar
  20. 20.
    N. Kitazawa and A. Sagnotti, in progress.Google Scholar
  21. 21.
    A. Gruppuso, P. Natoli, F. Paci, F. Finelli, D. Molinari, A. De Rosa, and N. Mandolesi, “Low variance at large scales of WMAP 9 year data,” JCAP 1307, 047 (2013) [arXiv:1304.5493 [astro-ph.CO]].ADSCrossRefGoogle Scholar
  22. 22.
    S. Ferrara and R. Kallosh, “Creation of matter in the universe and groups of type E7,” JHEP 1112, 096 (2011) [arXiv:1110.4048 [hep-th]].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Scuola Normale Superiore and INFNPisaItaly

Personalised recommendations