Physics of Particles and Nuclei Letters

, Volume 11, Issue 7, pp 877–879 | Cite as

Pomeron in the \(\mathcal{N}\) = 4 SYM at large coupling constant

Article
  • 18 Downloads

Abstract

We show the result for the BFKL Pomeron intercept at N = 4 SYM in the form of the inverse coupling expansion j 0 = 2 − 2λ−1/2 − λ−1 + 1/4λ−3/2 + 2(1 + 3ζ3−2 + O−5/2), which has been calculated in [1] with the use of the AdS/CFT correspondence.

Keywords

Anomalous Dimension Nucleus Letter Supersymmetric Gauge Theory Large Coupling Constant Wilson Operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Kotikov and L. N. Lipatov, “Pomeron in the N = 4 supersymmetric gauge model at strong couplings,” Nucl. Phys., Ser. B 874, 889 (2013); Preprint, arXiv:1401.0639 [hep-th].ADSCrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    A. V. Kotikov and L. N. Lipatov, “NLO corrections to the BFKL equation in QCD and in supersymmetric gauge theories,” Nucl. Phys., Ser. B 8582, 19 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    A. V. Kotikov and L. N. Lipatov, “DGLAP and BFKL equations in the N = 4 supersymmetric gauge theory,” Nucl. Phys., Ser. B 8661, 19 (2003); Preprint, hep-ph/0112346.ADSCrossRefGoogle Scholar
  4. 4.
    V. F. Fadin and L. N. Lipatov, “BFKL pomeron in the next-to-leading approximation,” Phys. Lett., Ser. B 429, 127 (1998); G. Camici and M. Ciafaloni, “Energy scale(s) and next-to-leading BFKL equation,” Phys. Lett., Ser. B 430, 349 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    L. N. Lipatov, “Reggeization of the vector meson and the vacuum singularity in non-abelian Gauge theories,” Sov. J. Nucl. Phys. 23, 338 (1976); V. F. Fadin, E. A. Kuraev, and L. N. Lipatov, “On the Pomeranchuk singularity in asymptotically free theories,” Phys. Lett., Ser. B 60, 50 (1975); “Multi-Reggeon processes in the Yang-Mills theory,” Sov. Phys. JETP 44, 443 (1976); “The Pomeranchuk singularity in non-abelian Gauge theories,” Sov. Phys. JETP 45, 199 (1977); I. I. Balitsky and L. N. Lipatov, “The Pomeranchuk singularity in quantum chromodynamics,” Sov. J. Nucl. Phys. 28, 822 (1978).Google Scholar
  6. 6.
    J. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998).ADSMathSciNetMATHGoogle Scholar
  7. 7.
    S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett., Ser. B 428, 105 (1998); E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2, 253 (1998).ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “A semi-classical limit of the gauge/string correspondence,” Nucl. Phys., Ser. B 636, 99 (2002).ADSCrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    S. Frolov and A. A. Tseytlin, “Semiclassical quantization of rotating superstring in AdS(5) × S(5),” JHEP 0206, 007 (2002); R. Roiban, A. Tirziu, and A. A. Tseytlin, “Two-loop world-sheet corrections in AdS5 × S5 superstring,” JHEP 0707, 056 (2007).ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    J. Polchinski and M. J. Strassler, “Hard scattering and gauge/string duality,” Phys. Rev. Lett. 88, 031601 (2002); “Deep inelastic scattering and gauge/string duality,” JHEP 0305, 012 (2003).ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. V. Kotikov et al., “Three-loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model,” Phys. Lett., Ser. B 632, 754 (2006).ADSCrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    A. V. Kotikov et al., “Three-loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model,” Phys. Lett., Ser. B 595, 521 (2004).ADSCrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    R. C. Brower et al., “The Pomeron and Gauge/string duality,” JHEP 0712, 005 (2007).ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    N. Gromov et al., “Quantum folded string and integrability: from finite size effects to Konishi dimension,” JHEP 1108, 046 (2011).ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    R. Roiban and A. A. Tseytlin, “Semiclassical string computation of strong-coupling corrections to dimensions of operators in Konishi multiplet,” Nucl. Phys., Ser. B 848, 251 (2011).ADSCrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    B. Basso, Preprint, arXiv:1109.3154 [hep-th]; Preprint, arXiv:1205.0054 [hep-th].Google Scholar
  17. 17.
    N. Gromov and S. Valatka, “Deeper look into short strings,” JHEP 1203, 058 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    G. P. Salam, “An introduction to leading and next-to-leading BFKL,” Acta Phys. Polon., Ser. B 30, 3679 (1999).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Bogoliubov Laboratory of Theoretical Physics Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Theoretical Physics DepartmentPetersburg Nuclear Physics InstituteGatchina, St. PetersburgRussia

Personalised recommendations