Skip to main content
Log in

Phase diagrams in nonlocal Polyakov-Nambu-Jona-Lasinio models constrained by lattice QCD results

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Based on lattice QCD-adjusted SU(2)f nonlocal Polyakov-Nambu-Jona-Lasinio (PNJL) models, we investigate how the location of the critical endpoint in the QCD phase diagram depends on the strenght of the vector meson coupling, as well as the Polyakov-loop (PL) potential and the form factors of the covariant model. The latter are constrained by lattice QCD data for the quark propagator. The strength of the vector coupling is adjusted such as to reproduce the slope of the pseudocritical temperature for the chiral phase transition at low chemical potential extracted recently from lattice QCD simulations. Our study supports the existence of a critical endpoint in the QCD phase diagram albeit the constraint for the vector coupling shifts its location to lower temperatures and higher baryochemical potentials than in the case without it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Stephanov, “QCD phase diagram,” in An Overview, PoS LAT 2006 024 (2006).

  2. A. Bazavov et al., “The chiral and deconfinement aspects of the QCD transition,” Phys. Rev. D 85, 054503 (2012).

    Article  ADS  Google Scholar 

  3. S. Ejiri, “Lattice QCD at finite temperature,” Nucl. Phys. Proc. Suppl. 94, 19 (2001).

    Article  ADS  Google Scholar 

  4. N. M. Bratovic, T. Hatsuda, and W. Weise, “Role of vector interaction and axial anomaly in the PNJL modeling of the QCD phase diagram,” Phys. Lett. B 719, 131 (2013).

    Article  ADS  Google Scholar 

  5. S. Carignano, D. Nickel, and M. Buballa, “Influence of vector interaction and Polyakov loop dynamics on inhomogeneous chiral symmetry breaking phases,” Phys. Rev. D 82, 054009 (2010).

    Article  ADS  Google Scholar 

  6. M. Kitazawa et al., “Chiral and color superconducting phase transitions with vector interaction in a simple model,” Prog. Theor. Phys. 108, 929 (2002).

    Article  ADS  MATH  Google Scholar 

  7. D. Blaschke, M. K. Volkov, and V. L. Yudichev, “Coexistence of color superconductivity and chiral symmetry breaking within the NJL model,” Eur. Phys. J. A 17, 103 (2003).

    Article  ADS  Google Scholar 

  8. T. Hatsuda et al., “New critical point induced by the axial anomaly in dense QCD,” Phys. Rev. Lett. 97, 122001 (2006).

    Article  ADS  Google Scholar 

  9. E. S. Bowman and J. I. Kapusta, “Critical points in the linear sigma model with quarks,” Phys. Rev. C 79, 015202 (2009).

    Article  ADS  Google Scholar 

  10. T. Kunihiro, Y. Minami, and Z. Zhang, “QCD critical points and their associated soft modes,” Prog. Theor. Phys. Suppl. 186, 447 (2010).

    Article  ADS  Google Scholar 

  11. Z. Zhang and T. Kunihiro, “Vector interaction, charge neutrality and multiple chiral critical point structures,” Phys. Rev. D 80, 014015 (2009).

    Article  ADS  Google Scholar 

  12. D. Blaschke et al., “Exploring the QCD phase diagram with compact stars,” Nucl. Phys. Proc. Suppl. 141, 137 (2005).

    Article  ADS  Google Scholar 

  13. A. Andronic et al., “Hadron production in ultra-relativistic nuclear collisions: Quarkyonic matter and a triple point in the phase diagram of QCD,” Nucl. Phys. A 837, 65 (2010).

    Article  ADS  Google Scholar 

  14. Y. Nambu and G. Jona-Lasinio, “Dynamical model of elementary particles based on an analogy with superconductivity,” Phys. Rev. 122, 345 (1961); 124, 246 (1961).

    Article  ADS  Google Scholar 

  15. U. Vogl and W. Weise, “The Nambu and Jona Lasinio model: Its implications for hadrons and nuclei,” Prog. Part. Nucl. Phys. 27, 195 (1991).

    Article  ADS  Google Scholar 

  16. S. P. Klevansky, “The Nambu-Jona-Lasinio model of quantum chromodynamics,” Rev. Mod. Phys. 64, 649 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  17. T. Hatsuda and T. Kunihiro, “QCD phenomenology based on a chiral effective Lagrangian,” Phys. Rept. 247, 221 (1994).

    Article  ADS  Google Scholar 

  18. C. Ratti, M. A. Thaler, and W. Weise, “Phases of QCD: Lattice thermodynamics and a field theoretical model,” Phys. Rev. D 73, 014019 (2006).

    Article  ADS  Google Scholar 

  19. S. Roessner, C. Ratti, and W. Weise, “Polyakov loop, diquarks and the two-flavour phase diagram,” Phys. Rev. D 75, 034007 (2007).

    Article  ADS  Google Scholar 

  20. C. Sasaki, B. Friman, and K. Redlich, “Susceptibilities and the Phase Structure of a Chiral Model with Polyakov Loops,” Phys. Rev. D 75, 074013 (2007).

    Article  ADS  Google Scholar 

  21. K. Fukushima, “Phase diagrams in the three-flavor Nambu-Jona-Lasinio model with the Polyakov loop,” Phys. Rev. D 77, 114028 (2008); ibid. 78, 039902 (2008).

    Article  ADS  Google Scholar 

  22. H. Abuki et al., “Chiral crossover, deconfinement and quarkyonic matter within a Nambu-Jona Lasinio model with the Polyakov loop,” Phys. Rev. D 78, 034034 (2008).

    Article  ADS  Google Scholar 

  23. S. M. Schmidt, D. Blaschke, and Y. L. Kalinovsky, “Scalar-pseudoscalar meson masses in nonlocal effective QCD at finite temperature,” Phys. Rev. C 50, 435 (1994).

    Article  ADS  Google Scholar 

  24. G. V. Efimov and S. N. Nedelko, “Nambu-Jona-Lasinio model with the homogeneous background gluon field,” Phys. Rev. D 51, 176 (1995).

    Article  ADS  Google Scholar 

  25. G. A. Contrera, D. Gomez Dumm, and N. N. Scoccola, “Nonlocal SU(3) chiral quark models at finite temperature: the role of the Polyakov loop,” Phys. Lett. B 661, 113 (2008).

    Article  ADS  Google Scholar 

  26. P. Demorest et al., “Shapiro delay measurement of a two solar mass neutron star,” Nature 467, 1081 (2010).

    Article  ADS  Google Scholar 

  27. J. Antoniadis et al., “A massive pulsar in a compact relativistic binary,” Science 340, 6131 (2013).

    Article  ADS  Google Scholar 

  28. T. Klähn et al., “Modern compact star observations and the quark matter equation of state,” Phys. Lett. B 654, 170 (2007).

    Article  ADS  Google Scholar 

  29. M. Orsaria et al., “Quark-hybrid matter in the cores of massive neutron stars,” Phys. Rev. D 87, 023001 (2013).

    Article  ADS  Google Scholar 

  30. T. Klahn, D. B. Blaschke, and R. Lastowiecki, “Implications of the measurement of pulsars with two solar masses for quark matter in compact stars and HIC. A NJL model case study,” Phys. Rev. D 88, 085001 (2013).

    Article  ADS  Google Scholar 

  31. M. Orsaria et al., Quark Deconfinement in High-Mass Neutron Stars, Phys. Rev. C 89, 015806 (2014).

    Article  ADS  Google Scholar 

  32. G. Y. Shao et al., Isoscalar-Vector Interaction and Hybrid Quark Core in Massive Neutron Stars, Phys. Rev. D 87, 096012 (2013).

    Article  ADS  Google Scholar 

  33. D. B. Blaschke et al., “Hybrid stars within a covariant, nonlocal chiral quark model,” Phys. Rev. C 75, 065804 (2007).

    Article  ADS  Google Scholar 

  34. D. Blaschke et al., Nonlocal PNJL Models and Heavy Hybrid Stars, PoS ConfinementX, 2012, 249.

    Google Scholar 

  35. D. Blaschke, D. E. Alvarez-Castillo, and S. Benic, Mass-Radius Constraints for Compact Stars and a Critical Endpoint, PoS CPOD 2013, 063; [arXiv:1310.3803 [nucl-th]].

    Google Scholar 

  36. D. E. Alvarez-Castillo et al., Crossover Transition to Quark Matter in Heavy Hybrid Stars, Acta Phys. Polon. Supp. 7, 203 (2014).

    Google Scholar 

  37. G. A. Contrera, M. Orsaria, and N. N. Scoccola, “Nonlocal Polyakov-Nambu-Jona-Lasinio model with wave function renormalization at finite temperature and chemical potential,” Phys. Rev. D 82, 054026 (2010).

    Article  ADS  Google Scholar 

  38. D. Gomez Dumm and N. N. Scoccola, “Characteristics of the chiral phase transition in nonlocal quark models,” Phys. Rev. C 72, 014909 (2005).

    Article  ADS  Google Scholar 

  39. S. Noguera and N. N. Scoccola, “Nonlocal chiral quark models with wavefunction renormalization: sigma properties and pion-pion scattering parameters,” Phys. Rev. D 78, 114002 (2008).

    Article  ADS  Google Scholar 

  40. D. Gomez Dumm et al., “Color neutrality effects in the phase diagram of the PNJL model,” Phys. Rev. D 78, 114021 (2008).

    Article  ADS  Google Scholar 

  41. M. B. Parappilly et al., “Scaling behavior of quark propagator in full QCD,” Phys. Rev. D 73, 054504 (2006).

    Article  ADS  Google Scholar 

  42. W. Kamleh et al., “Unquenching effects in the quark and gluon propagator,” Phys. Rev. D 76, 094501 (2007).

    Article  ADS  Google Scholar 

  43. O. Kaczmarek et al., “Phase boundary for the chiral transition in (2 + 1)-flavor QCD at small values of the chemical potential,” Phys. Rev. D 83, 014504 (2011).

    Article  ADS  Google Scholar 

  44. V. A. Dexheimer and S. Schramm, “A novel approach to model hybrid stars,” Phys. Rev. C 81, 045201 (2010).

    Article  ADS  Google Scholar 

  45. B.-J. Schaefer, J. M. Pawlowski, and J. Wambach, “The phase structure of the Polyakov-Quark-Meson model,” Phys. Rev. D 76, 074023 (2007).

    Article  ADS  Google Scholar 

  46. V. Pagura, D. Gomez Dumm, and N. N. Scoccola, “Deconfinement and chiral restoration in non-local PNJL models at zero and imaginary chemical potential,” Phys. Lett. B 707, 76 (2012).

    Article  ADS  Google Scholar 

  47. D. Horvatic et al., “Width of the QCD transition in a Polyakov-loop DSE model,” Phys. Rev. D 84, 016005 (2011).

    Article  ADS  Google Scholar 

  48. Y. Sakai et al., “Entanglement between deconfinement transition and chiral symmetry restoration,” Phys. Rev. D 82, 076003 (2010).

    Article  ADS  Google Scholar 

  49. M. Dutra et al., “Polyakov-Nambu-Jona-Lasinio phase diagrams and quarkyonic phase from order parameters,” Phys. Rev. D 88, 114013 (2013).

    Article  ADS  Google Scholar 

  50. D. B. Blaschke et al., “Accessibility of color superconducting quark matter phases in heavy-ion collisions,” Acta Phys. Polon. Supp. 3, 741 (2010).

    Google Scholar 

  51. G. Y. Shao et al., “Phase diagrams in the Hadron-PNJL model,” Phys. Rev. D 84, 034028 (2011).

    Article  ADS  Google Scholar 

  52. T. Sasaki et al., “QCD phase diagram at finite baryon and isospin chemical potentials,” Phys. Rev. D 82, 116004 (2010).

    Article  ADS  Google Scholar 

  53. T. Hell, K. Kashiwa, and W. Weise, “Impact of vectorcurrent interactions on the QCD phase diagram,” J. Mod. Phys. 4, 644 (2013).

    Article  Google Scholar 

  54. C. Sasaki and K. Redlich, “An effective gluon potential and hybrid approach to Yang-Mills thermodynamics,” Phys. Rev. D 86, 014007 (2012).

    Article  ADS  Google Scholar 

  55. M. Ruggieri et al., “Polyakov loop and gluon quasiparticles in Yang-Mills thermodynamics,” Phys. Rev. D 86, 054007 (2012).

    Article  ADS  Google Scholar 

  56. K. Fukushima and K. Kashiwa, “Polyakov loop and QCD thermodynamics from the gluon and ghost propagators,” Phys. Lett. B 723, 360 (2013).

    Article  ADS  Google Scholar 

  57. A. E. Radzhabov et al., “Nonlocal PNJL model beyond mean field and the QCD phase transition,” Phys. Rev. D 83, 116004 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  58. D. B. Blaschke et al., “Chiral condensate and chemical freeze-out,” Phys. Part. Nucl. Lett. 8, 811 (2011); “Few body systems,” 53, 99 (2012).

    Article  Google Scholar 

  59. L. Turko et al., “Mott-Hagedorn resonance gas and lattice QCD results,” Acta Phys. Polon. Supp. 5, 485 (2012).

    Article  Google Scholar 

  60. L. Turko et al., “An effective model of QCD thermodynamics,” J. Phys. Conf. Ser. 455, 012056 (2013).

    Article  ADS  Google Scholar 

  61. A. Wergieluk et al., “Pion dissociation and Levinson’s theorem in hot PNJL quark matter,” Phys. Part. Nucl. Lett. 10, 660 (2013).

    Article  Google Scholar 

  62. A. Dubinin, D. Blaschke, and Y. L. Kalinovsky, Pion and Sigma Meson Dissociation in a Modified NJL Model at Finite Temperature, Acta Phys. Polon. Supp. 7, 215 (2014).

    Article  Google Scholar 

  63. S. Benic and D. Blaschke, “Finite temperature Mott transition in a nonlocal PNJL model,” Acta Phys. Polon. Supp. 6, 947 (2013).

    Article  Google Scholar 

  64. S. Benic et al., “Medium induced Lorentz symmetry breaking effects in nonlocal PNJL models,” Phys. Rev. D 89, 016007 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Contrera.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contrera, G.A., Grunfeld, A.G. & Blaschke, D.B. Phase diagrams in nonlocal Polyakov-Nambu-Jona-Lasinio models constrained by lattice QCD results. Phys. Part. Nuclei Lett. 11, 342–351 (2014). https://doi.org/10.1134/S1547477114040128

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477114040128

Keywords

Navigation