Advertisement

Physics of Particles and Nuclei Letters

, Volume 10, Issue 7, pp 660–668 | Cite as

Pion dissociation and Levinson’s theorem in hot PNJL quark matter

  • A. Wergieluk
  • D. Blaschke
  • Yu. L. Kalinovsky
  • A. V. Friesen
Physics of Elementary Particles and Atomic Nuclei. Theory

Abstract

Pion dissociation by the Mott effect of quark plasma is described within the generalized Beth-Uhlenbeck approach on the basis of the PNJL model which allows for a unified description of bound, resonant and scattering states. As a first approximation, we utilize the Breit-Wigner ansatz for the spectral function and clarify its relation to the complex mass pole solution of the pion Bethe-Salpeter equation. Application of the Levinson theorem proves that describing the pion Mott dissociation solely by means of spectral broadening of the pion bound state beyond T Mott leaves out a significant aspect. Thus we acknowledge the importance of the continuum of scattering states and show its role for the thermodynamics of pion dissociation.

Keywords

Nucleus Letter Polyakov Loop Chiral Limit Scatter Phase Shift Chiral Symmetry Restoration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Beth and G. E. Uhlenbeck, “Quantum theory of the non-ideal gas,” Physica 3, 728 (1936); 4, 915 (1937).Google Scholar
  2. 2.
    R. Dashen, S.-K. Ma, and H.J. Bernstein, “S Matrix formulation of statistical mechanics,” Phys. Rev. 187, 345–370 (1969).ADSCrossRefMATHGoogle Scholar
  3. 3.
    J. Hufner, S. P. Klevansky, P. Zhuang, and H. Voss, “Thermodynamics of a quark plasma beyond the mean field: A generalized Beth-Uhlenbeck approach,” Annals Phys. 234, 225 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    P. Zhuang, J. Hufner, and S. P. Klevansky, “Thermodynamics of quark-meson plasma in the Nambu-Jona-Lasinio model,” Nucl. Phys., Ser. A 576, 525–552 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    S. Roessner, T. Hell, C. Ratti, and W. Weise, “The chiral and deconfinement crossover transitions: PNJL model beyond mean field,” Nucl. Phys., Ser. A 814, 118–143 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    K. Yamazaki and T. Matsui, “Quark-hadron phase transition in the PNJL Model for interacting quarks”, Nucl. Phys., Ser. A 913, 19–50 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    D. Blaschke, D. Zablocki, M. Buballa, and G. Roepke, Generalized Beth-Uhlenbeck approach to mesons and diquarks in hot, dense quark matter; arXiv:1305.3907 [hep-ph].Google Scholar
  8. 8.
    Y. Nambu and G. Jona-Lasinio, “Dynamical model of elementary particles based on an analogy with superconductivity,” Phys. Rev. 122, 345–358 (1961).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Nambu and G. Jona-Lasinio, “Dynamical model of elementary particles based on an analogy with superconductivity,” Phys. Rev. 124, 246–254 (1961).ADSCrossRefGoogle Scholar
  10. 10.
    M. K. Volkov, “Meson Lagrangians in a superconductor quark model,” Annuals Phys. 157, 282 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    U. Vogl and W. Weise, “The Nambu and Jona Lasinio model: its implications for hadrons and nuclei,” Prog. Part. Nucl. Phys. 27, 195–272 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    S. P. Klevansky, “The Nambu-Jona-Lasinio model of quantum chromodynamics,” Rev. Mod. Phys. 64, 649–708 (1992).ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    T. Hatsuda and T. Kunihiro, “QCD phenomenology based on a chiral effective Lagrangian,” Phys. Rept. 247, 221–367 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    M. Buballa, “NJL model analysis of quark matter at large density,” Phys. Rept. 407, 205–376 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    P.N. Meisinger, T. R. Miller, and M. C. Ogilvie, “Phenomenological equations of state for the quark gluon plasma,” Phys, Rev., Ser. D 65, 034009 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    K. Fukushima, “Chiral effective model with the Polyakov loop,” Phys. Lett., Ser. B 591, 277–284 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    C. Ratti, M. A. Thaler, and W. Weise, “Phases of QCD: Polyakov thermodynamics and a field theoretical model,” Phys. Rev., Ser. D 73, 014019 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    S. Roessner, C. Ratti, and W. Weise, “Polyakov loop, diquarks and the two-flavour phase diagram,” Phys. Rev., Ser. D 75, 034007 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    H. Hansen, et al., “Mesonic correlation functions at finite temperature and density in the Nambu-Jona-Lasinio model with a Polyakov loop,” Phys. Rev., Ser. D 75, 065004 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    H. Grigorian, “Parametrization of a nonlocal, chiral quark model in the instantaneous three-flavor case: basic formulas and tables,” Phys. Part. Nucl. Lett. 4, 223 (2007).CrossRefGoogle Scholar
  21. 21.
    P. Costa, et al., “How parameters and regularization effect the PNJL model phase diagram and thermodynamic quantities,” Phys. Rev., Ser. D 81, 016007 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    H. Abuki, “BCS/BEC crossover in quark matter and evolution of its static and dynamic properties: from the atomic unitary gas to color superconductivity,” Nucl. Phys., Ser. A 791, 117–164 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    L. Turko, et al., “Mott-Hagedorn resonance gas and lattice QCD results,” Acta Phys. Polon. Supp. 5, 485 (2012).CrossRefGoogle Scholar
  24. 24.
    B.-J. Schaefer, J. M. Pawlowski, and J. Wambach, “The phase structure of the Polyakov-Quark-Meson model,” Phys. Rev., Ser. D 76, 074023 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. Wergieluk
    • 1
  • D. Blaschke
    • 1
    • 2
    • 3
  • Yu. L. Kalinovsky
    • 4
  • A. V. Friesen
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of WrocławWrocławPoland
  2. 2.Bogoliubov Laboratory for Theoretical PhysicsJINR DubnaDubnaRussia
  3. 3.Fakultät für PhysikUniversität BielefeldBielefeldGermany
  4. 4.Laboratory for Information TechnologiesJINR DubnaDubnaRussia

Personalised recommendations