Physics of Particles and Nuclei Letters

, Volume 10, Issue 6, pp 481–490 | Cite as

Comparison of fractal analysis methods in the study of fractals with independent branching

Physics of Elementary Particles and Atomic Nuclei. Theory


The notion of dimension as a quantitative characteristic of space geometry is discussed. It is supposed that hadrons created in interactions between particles and nuclei can be considered sets of points possessing fractal properties in the three-dimensional phase space (p T , η, ϕ). The Hausdorff-Besicovich dimension D F is considered the most natural characteristic for determining the fractal dimension. Different methods for determining the fractal dimension are compared: box counting (BC), P-adic coverage (PaC), and system of equations of P-adic coverage (SePaC). A procedure for choosing optimum values of parameters of the considered methods is presented. These parameters are shown to be able to reconstruct the fractal dimension D F , number of levels N lev, and fractal structure with maximal efficiency. The features of the PaC- and SePaC-methods in the analysis of fractals with independent branching are noted.


Fractal Dimension Nucleus Letter Reconstruction Error Parton Shower Admissible Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Gorelik, Dimension of the Space (Mosk. Gos. Univ., Moscow, 1983) [in Russian].Google Scholar
  2. 2.
    F. Hausdorff, Math. Ann. 79, 157 (1918).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).MATHGoogle Scholar
  4. 4.
    A. Barabasi and H. Stanley, Fractal Concepts in Surface Growth (Cambridge Univ. Press, New York, 1995).CrossRefMATHGoogle Scholar
  5. 5.
    A. Saa, G. Gasco, J. B. Grau, J. M. Anton, and A. M. Tarquis, Nonlinear. Proc. Geophys. 14, 603 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    J. L. Vehel and F. Roueff, in Proceedings of the Conference’ Fractals 98’, Valletta, Malta, 1998, p. 165.Google Scholar
  7. 7.
    E. Feder, Fractals (Plenum, New York, 1988).CrossRefMATHGoogle Scholar
  8. 8.
    A. Pavlov and V. S. Anishchenko, Usp. Fiz. Nauk 50, 8 (2007).CrossRefGoogle Scholar
  9. 9.
    T. Dedovich and M. Tokarev, Phys. Part. Nucl. Lett 8, 521 (2011).CrossRefGoogle Scholar
  10. 10.
    T. Dedovich and M. Tokarev, Phys. Part. Nucl. Lett 9, 552 (2012).CrossRefGoogle Scholar
  11. 11.
    T. Sjostrand, S. Mrenna and P. Skands, Comput. Phys. Commun. 178, 852 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    M. Bähr, S. Gieseke, M.A. Gigg, D. Grellscheid, K. Hamilton, O. Latunde-Dada, S. Platzer, P. Richardson, M. H. Seymour, A. Sherstnev, J. Tully, and B. R. Webber, arXiv: 0809.2002 [hep-ph] (2008).Google Scholar
  13. 13.
    T. Gleisberg, S. Höche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, and J. Winter, J. High Energy Phys. 0902, 007 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    M. Gyulassy and X. N. Wang, Comput. Phys. Commun. 83, 307 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    L. Lonnblad, Comput. Phys. Commun. 71, 15 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    A. Galoyan, e-Print: nucl-th/0605021 (2006).Google Scholar
  17. 17.
    E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep. 270, 1 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    R. Hwa and M. Nazirov, Phys. Rev. Lett. 69, 741 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow regionRussia

Personalised recommendations