Physics of Particles and Nuclei Letters

, Volume 10, Issue 5, pp 424–430 | Cite as

J/ψ reconstruction in the dielectron decay channel at SIS100 energies in the CBM experiment

  • O. Yu. Derenovskaya
  • Yu. O. Vassiliev
Methods of Physical Experiment


We have developed a method of J/ψ reconstruction in the dielectron decay channel at protonnuclear (p-C and p-Au at an energy of 30 GeV) and nuclear-nuclear (Au-Au at an energy of 10 GeV/nucleon) collisions with the use of the CBM setup. The KFParticle package is used for reconstructing the topology of signal events. It is shown that the CBM setup allows accumulating considerable J/ψ statistics over a reasonable time interval at SIS100 energies.


Nucleus Letter Invariant Mass Spectrum Combinatorial Background Resistive Plate Chamber Compress Baryonic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Friman, C. Höhne, J. Knoll, S. Leupold, J. Randrup, R. Rapp, and P. Senger, The CBM Physics Book: Compressed Baryonic Matter in Laboratory Experiments (Springer, 2011).CrossRefGoogle Scholar
  2. 2.
    CBM Collaboration, Compressed baryonic matter experiment. Technical status report.
  3. 3.
    CBM Collaboration, Nuclear matter physics at SIS-100.
  4. 4.
    S. Gorbunov and I. Kisel, Reconstruction of decayed particles based on the Kalman filter.
  5. 5.
    S. Gorbunov and I. Kisel, Secondary vertex fit based on the Kalman filter.
  6. 6.
    M. Bleicher, E. Zabrodin, C. Spieles, et al., J. Phys. G: Nucl. Part. Phys. 25, 1859 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    Pluto: A Monte Carlo Simulation Tool for Hadronic Physics.
  8. 8.
    CERN Computing and Networks Division, GEANT documentation.
  9. 9.
    I. Kisel, Nucl. Instrum. Methods Phys. Res., Sect. A 566, 85–88 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    C. Höhne, S. Das, M. Dürr, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 595, 187–189 (2008). doi 10.1016/j.nima.2008.07.029ADSCrossRefGoogle Scholar
  11. 11.
    S. A. Lebedev and G. A. Ososkov, Phys. Part. Nucl. Lett. 6, 161–176 (2009).CrossRefGoogle Scholar
  12. 12.
    S. A. lebedev, “Mathematical software for reconstruction of Cherenkov rings and electron identification in the CBM experiment RICH detector,” Candidate’s Dissertation in Mathematics and Physics (JINR, Dubna, 2011).Google Scholar
  13. 13.
    T. P. Akishina, O. Yu. Derenovskaya, and V. V. Ivanov, Vestn. RUDN, Ser. Mat., Inf., Fiz., No. 1, 94–103 (2011).Google Scholar
  14. 14.
    ROOT: An Object-Oriented Data Analysis Framework.
  15. 15.
    J. Geiss, W. Cassing, and C. Greiner, Nucl. Phys. A 644, 107–138 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    K. Nakamura et al. (Particle Data Group), J. Phys. G: Nucl. Part. Phys. 37, 075021 (2010). ADSCrossRefGoogle Scholar
  17. 17.
    O. Yu. Derenovskaya and I. O. Vassiliev, in CBM Progress Report 2011, Ed. by V. Friese and C. Sturm (GSI Darmstadt, Darmstadt, 2012), p. 86.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • O. Yu. Derenovskaya
    • 1
  • Yu. O. Vassiliev
    • 2
    • 3
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany
  3. 3.Goethe University FrankfurtFrankfurt am MainGermany

Personalised recommendations