Physics of Particles and Nuclei Letters

, Volume 9, Issue 9–10, pp 769–771 | Cite as

Axial anomaly, quark-hadron duality and transition form factors

  • Y. N. Klopot
  • A. G. Oganesian
  • O. V. Teryaev


We study the transition form factors of pseudoscalar mesons by means of anomaly sum rule — an exact relation which is a consequence of dispersive representation of axial anomaly. This sum rule (derived for the octet channel) and combined with the quark-hadron duality allows us to relate the transition form factors of η and η′ mesons. The notion of quark-hadron duality in connection with our approach is discussed and comparison with recent experimental data is done.


Nucleus Letter Pseudoscalar Meson Axial Current Transition Form Factor Photon Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Bell and R. Jackiw, “A PCAC Puzzle: π0 → ΓΓ in the Sigma Model,” Nuovo Cimento A 60, 47–61 (1969); S. L. Adler, “Axial Vector Vertex in Spinor Electrodynamics,” Phys. Rev. 177, 2426–2438 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    A. D. Dolgov and V. I. Zakharov, “On Conservation of the Axial Current in Massless Electrodynamics,” Nucl. Phys. B 27, 525–540 (1971).ADSCrossRefGoogle Scholar
  3. 3.
    J. Horejsi, “On Dispersive Derivation of Triangle Anomaly,” Phys. Rev. D 32, 1029 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    J. Horejsi and O. Teryaev, “Dispersive Approach to the Axial Anomaly, the t’Hooft’s Principle and QCD Sum Rules,” Z. Phys. C 65, 691–696 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    Y. N. Klopot, A. G. Oganesian, and O. V. Teryaev, “Axial Anomaly as a Collective Effect of Meson Spectrum,” Phys. Lett. B 695, 130–135 (2011); Y. N. Klopot, A. G. Oganesian, and O. V. Teryaev, “Axial Anomaly and Mixing: From Real to Highly Virtual Photons,” Phys. Rev. D 84, 051901 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    P. Kroll, “The Form Factors for the Photon to Pseudoscalar Meson Transitions — An Update,” Eur. Phys. J. C 71, 1623 (2011); S. J. Brodsky, F.-G. Cao, and G. F. de Teramond, “Evolved QCD Predictions for the Meson-Photon Transition Form Factors,” Phys. Rev. D 84, 033001 (2011); X.-G. Wu and T. Huang, “Constraints on the Light Pseudoscalar Meson Distribution Amplitudes from Their Meson-Photon Transition Form Factors,” Phys. Rev. D 84, 074011 (2011); A. P. Bakulev, S. V. Mikhailov, A. V. Pimikov, and N. G. Stefanis, “Pion-Photon Transition: The New QCD Frontier,” Phys. Rev. D 84, 034014 (2011); A. E. Dorokhov, “Pseudoscalar Meson Form Factors and Decays,” arXiv:1109.3754 [hep-ph]; I. Balakireva, W. Lucha, and D. Melikhov, “Pion Elastic and (π0, η, η′) → ΓΓ* Transition Form Factors in a Broad Range of Momentum Transfers,” arXiv:1110.6904 [hep-ph]; S. Noguera and S. Scopetta, “The eta-photon Transition Form Factor,” arXiv:1110.6402 [hep-ph].ADSCrossRefGoogle Scholar
  7. 7.
    P. del Amo Sanchez et al. (BABAR Collab.), “Measurement of the ΓΓ* → η and ΓΓ* → η’ Transition Form Factors,” Phys. Rev. D 84, 052001 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    S. L. Adler and W. A. Bardeen, “Absence of Higher Order Corrections in the Anomalous Axial Vector Divergence Equation,” Phys. Rev. 182, 1517–1536 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    G. P. Lepage and S. J. Brodsky, “Exclusive Processes in Quantum Chromodynamics: Evolution Equations for Hadronic Wave Functions and the Form-Factors of Mesons,” Phys. Lett. B 87, 359–365 (1979); A. V. Efremov and A. V. Radyushkin, “Factorization and Asymptotical Behavior of Pion Form-Factor in QCD,” Phys. Lett. B 94, 245–250 (1980).ADSCrossRefGoogle Scholar
  10. 10.
    F. Jegerlehner and O. V. Tarasov, “Explicit Results for the Anomalous Three Point Function and Non-Renormalization Theorems,” Phys. Lett. B 639, 299–306 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Y. N. Klopot
    • 1
  • A. G. Oganesian
    • 1
    • 2
  • O. V. Teryaev
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Institute of Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations