Physics of Particles and Nuclei Letters

, Volume 9, Issue 3, pp 213–215 | Cite as

Analogue of the Weyl representation of algebra of canonical commutation relations in the case of nonphysical particles

  • Yu. S. Vernov
  • M. N. Mnatsakanova
  • S. G. Salynskii
Physics of Elementary Particles and Atomic Nuclei. Theory


An analogue of the Weyl representation of the algebra of canonical commutation relations is proved to exist in the anti-Fock case achieved in Krein space.


Hilbert Space Nucleus Letter Krein Space Canonical Commutation Relation Popov Ghost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kugo and I. Ojima, Suppl. Prog. Theor. Phys. 66, 1 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    G. Morchio and F. Strocchi, Ann. Inst. H. Poincaré A 33, 251 (1980).MathSciNetGoogle Scholar
  3. 3.
    C. R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics (Springer-Verlag, Berlin, Heidelberg, New York, 1967), Ch. 4, p. 63.Google Scholar
  4. 4.
    K. Yosida, Functional Analysis, Springer Classics in Mathematics (Springer, New York, 1996; Mir, Moscow, 1967).Google Scholar
  5. 5.
    O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics (Springer-Verlag, Berlin, Heidelberg, New York, 1979), Vol. 2.MATHGoogle Scholar
  6. 6.
    C. Foias, L. L. Geher, and B. Sz.-Nagy, Acta Sec. Math. (Szeged) 21, 78 (1960).MathSciNetMATHGoogle Scholar
  7. 7.
    Yu. S. Vernov, M. N. Mnatsakanova, and S. G. Salynskii, “A New Definition of Regularity for Representation of Canonical Commutation Relations Algebras,” Mosc. Univ. Phys. Bull. 65, 547 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    J. Bognar, Indefinite Inner Product Spaces (Springer-Verlag, Berlin, Heidelberg, New York, 1974).MATHGoogle Scholar
  9. 9.
    T. Ya. Azizov and I. S. Iokhvidov, Foundations of the Theory of Linear Iperators in Spaces with Indefinite Metric (Nauka, Moscow, 1986) [in Russian].Google Scholar
  10. 10.
    M. G. Krein, Am. Math. Soc. Transl. 93, 103 (1970).MathSciNetGoogle Scholar
  11. 11.
    M. Mnatsakanova et al., J. Math. Phys. 39, 2969 (1998).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Yu. S. Vernov
    • 1
  • M. N. Mnatsakanova
    • 2
  • S. G. Salynskii
    • 3
  1. 1.Institute for Nuclear ResearchRussian Academy of SciencesMoscowRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsMoscowRussia
  3. 3.Institute for High Energy PhysicsProtvinoRussia

Personalised recommendations