Physics of Particles and Nuclei Letters

, Volume 8, Issue 8, pp 801–804 | Cite as

Hydrodynamics of fluids with spin

  • F. Becattini


We discuss the possibility of a non-vanishing spin tensor in relativistic hydrodynamics and its relevance to the description of Quark-Gluon-Plasma evolution in relativistic heavy ion collisions. After a short historical introduction, we report on some recent theoretical results for fully equilibrated fluids.


Angular Momentum Nucleus Letter Stress Energy Tensor Spin Tensor Phase Space Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Heinz, Relativistic Heavy Ion Physics. Landolt-Börnstein 1–23, (Springer, 2010), arXiv:0901.4355.Google Scholar
  2. 2.
    U. Heinz, theese proceedings.Google Scholar
  3. 3.
    F. Becattini and L. Tinti, Ann. Phys. 325, 1566 (2010).CrossRefMATHADSMathSciNetGoogle Scholar
  4. 4.
    S. J. Barnett, Phys. Rev. 6, 239 (1915); Rev. Mod. Phys. 7, 129 (1935).CrossRefADSGoogle Scholar
  5. 5.
    L. D. Landau, L. P. Pitaevski, and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960).MATHGoogle Scholar
  6. 6.
    E. M. Purcell, Astrophys. J. 231, 404 (1979).CrossRefADSGoogle Scholar
  7. 7.
    A. Einstein and W. J. de Haas, Deutsche Phys. Gesellsch., Verhandlungen 17, 152 (1915).ADSGoogle Scholar
  8. 8.
    M. Mathisson, Acta Phys. Polon. A 6, 163 (1937).MATHGoogle Scholar
  9. 9.
    J. Weyssenhoff and A. Raabe, Acta Phys. Polon. A 9, 7 (1947).MathSciNetGoogle Scholar
  10. 10.
    R. Hagedorn, Relativistic Kinematics (Benjamin, New York, 1963).MATHGoogle Scholar
  11. 11.
    D. Bohm and J. P. Vigier, Phys. Rev. 109, 1882 (1958).CrossRefMATHADSMathSciNetGoogle Scholar
  12. 12.
    F. Halbwachs, Theorie relativiste des fluids a spin (Gauthier-Villars, Paris, 1960).Google Scholar
  13. 13.
    J. Ray, L. Smalley, Phys. Rev. D. 26, 2619 (1982); A. V. Minkevich and F. Karakura, J. Math. Phys. A 16, 1409 (1983); J. Ray, L. Smalley, and J. P. Krisch, Phys. Rev. D 35, 3261 (1987); Yu. N. Obukhov and O. B. Piskareva, Class. Quantum Grav. 6, L15 (1989); M. A. P. Martins, E. P. Vasconcellos-Vaidya, and M. M. Son, Class. Quantum Grav. 8, 2225 (1991); L. Smalley and J. P. Krisch, J. Math. Phys. 36, 778 (1995); Th. Chrobok, H. Hermann, and G. Rückner, Techn. Mech. 22, 1 (2002); S. D. Brechet, M. P. Hobson, and A. N. Lasenby, Class. Quant. Grav. 24, 6329 (2007).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    J. Ray and L. Smalley, Phys. Rev. Lett. 49, 1059 (1982); J. Ray and L. Smalley, Phys. Rev. D 27, 1383 (1983); R. de Ritis, M. Lavorgna, G. Platania, and C. Stornaiolo, Phys. Rev. D 28, 713 (1983); Phys. Rev. D 31, 1854 (1985); Yu. N. Obukhov and V. A. Korotky, Class. Quantum Grav. 4, 1633 (1987); C. G. Böhmer and P. Bronowski, arXiv:gr-qc/0601089; G. de Berredo-Peixoto and E. A. de Freitas, Class. Quant. Grav. 26, 175015 (2009).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    F. Becattini and F. Piccinini, Ann. Phys. 323, 2452 (2008).CrossRefMATHADSGoogle Scholar
  16. 16.
    L. Landau and L. Lifshitz, Statistical Physics (Pergamon, Oxford, 1980).Google Scholar
  17. 17.
    W. Israel, Ann. Phys. (N.Y.) 100, 310 (1976).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    S. R. de Groot, W. A. van Leeuwen, and Ch. G. van Weert, Relativistic Kinetic Theory (North-Holland, Amsterdam, 1980).Google Scholar
  19. 19.
    B. Clancy, L. Luo, and J. Thomas, Phys. Rev. Lett. 99, 140401 (2007).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Università di Firenze and INFN Sezione di FirenzeSesto, FirenzeItaly

Personalised recommendations