Advertisement

Physics of Particles and Nuclei Letters

, Volume 8, Issue 7, pp 717–742 | Cite as

Introduction to neutrino physics

  • D. V. Naumov
Article

Abstract

A synopsis of lectures is presented which were delivered by the author in 2010 at the Baikal summer school on physics of elementary particles and astrophysics. The lectures are primarily intended for students, postgraduates, and young researchers as an introductory course on neutrino physics.

Keywords

Neutrino Mass Neutrino Oscillation Nucleus Letter Solar Neutrino Wilkinson Microwave Anisotropy Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Vysotskii, “Lectures on Theory of Electroweak Interactions,” Fiz. Elem. Chastits At. Yadra, No. 7 (2011, in press).Google Scholar
  2. 2.
    C. Kraus et al., “Final Results from Phase II of the Mainz Neutrino Mass Search in Tritium β Decay,” Eur. Phys. J. C 40, 447–468 (2005).CrossRefADSGoogle Scholar
  3. 3.
    G. L. Fogli et al., “Observables Sensitive to Absolute Neutrino Masses (Addendum),” Phys. Rev. D 78, 033010 (2008). S. A. Thomas, F. B. Abdalla, and O. Lahav, “Upper Bound of 0.28 eV on the Neutrino Masses from the Largest Photometric Redshift Survey,” Phys. Rev. Lett. 105, 031301 (2010).CrossRefADSGoogle Scholar
  4. 4.
    P. Minkowski, Phys. Lett. B 67, 421 (1977); M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity, Ed. by D. Freedman et al. (North-Holland, Amsterdam, 1980); T. Yanagida, in Proceedings of the Workshop on Baryon Number in the Universe, Ed. by O. Sawada and A. Sugamoto (KEK, 1979); R. Mohapatra and G. Senjanovic, Phys. Rev. Lett 44, 912 (1980); K. S. Babu and J. Julio, “Two-Loop Neutrino Mass Generation through Leptoquarks,” Nucl. Phys. B 841, 130 (2010).CrossRefADSGoogle Scholar
  5. 5.
    M. Beuthe, “Oscillations of Neutrinos and Mesons in Quantum Field Theory,” Phys. Rep. 375, 105 (2003).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    E. Kh. Akhmedov and A. Yu. Smirnov, “Paradoxes of Neutrino Oscillations,” Yad. Fiz. 72, 1417 (2009). [Phys. At. Nucl. 72, 1363 (2009)].Google Scholar
  7. 7.
    W. Grimus and P. Stockinger, “Real Oscillations of Virtual Neutrinos,” Phys. Rev. D 54, 3414 (1996); W. Grimus, S. Mohanty and P. Stockinger, “Field Theoretical Treatment of Neutrino Oscillations: The Strength of the Canonical Oscillation Formula,” arXiv:hep-ph/9909341; W. Grimus, S. Mohanty, and P. Stockinger, “Neutrino Oscillations and the Effect of the Finite Lifetime of the Neutrino Source,” Phys. Rev. D 61, 033001 (2000); P. Stockinger, “Introduction to a Field-Theoretical Treatment of Neutrino Oscillations,” Pramana 54, 203 (2000); C. Y. Cardall, “Coherence of Neutrino Flavor Mixing in Quantum Field Theory,” Phys. Rev. D 61, 073006 (1999); M. Beuthe, “Towards a Unique Formula for Neutrino Oscillations in Vacuum,” Phys. Rev. D 66, 013003 (2002).CrossRefADSGoogle Scholar
  8. 8.
    D. V. Naumov and V. A. Naumov, “A Diagrammatic Treatment of Neutrino Oscillations,” J. Phys. G 37, 105014 (2010); V. A. Naumov and D. V. Naumov, “Relativistic Wave Packets in the Quantum Field Approach to the Theory of Neutrino Oscillations,” Izv. Vyssh. Uchebn. Zaved., Fiz. 53, 5 (2011) [Russ. Phys. J. 53, 549 (2010)].CrossRefADSGoogle Scholar
  9. 9.
    E. K. Akhmedov, “Do Charged Leptons Oscillate?,” J. High Energy Phys. 0709, 116 (2007).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    S. P. Mikheev and A. Y. Smirnov, “Resonance Enhancement of Oscillations in Matter and Solar Neutrino Spectroscopy,” Sov. J. Nucl. Phys. 42, 913 (1985) [Yad. Fiz. 42, 1441 (1985)]; L. Wolfenstein, “Neutrino Oscillations in Matter,” Phys. Rev. D 17, 2369 (1978).Google Scholar
  11. 11.
    D. Larson et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters,” Astrophys. J. Suppl. 192, 16 (2011).CrossRefADSGoogle Scholar
  12. 12.
    V. M. Lobashev, “The Search for the Neutrino Mass by Direct Method in the Tritium Beta-Decay and Perspectives of Study It in the Project KATRIN,” Nucl. Phys. A 719, 153 (2003).CrossRefADSGoogle Scholar
  13. 13.
    V. A. Naumov, “Solar Neutrinos. Astrophysical Aspects,” Fiz. Elem. Chastits At. Yadra, No. 7 (2011, in press).Google Scholar
  14. 14.
    J. N. Bahcall, Neutrino Astrophysics (Cambridge Univ., 1989; Mir, Moscow, 1993).Google Scholar
  15. 15.
    J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. 621, L85 (2005); J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. Suppl. 165, 400 (2006); C. Pena-Garay and A. M. Serenelli, arXiv:0811.2424.CrossRefADSGoogle Scholar
  16. 16.
    B. T. Cleveland et al., Astrophys. J. 496, 505 (1988).CrossRefADSGoogle Scholar
  17. 17.
    P. Anselmann et al., Phys. Lett. B 285, 376 (1992); W. Hampel et al., Phys. Lett. B 447, 127 (1999).CrossRefADSGoogle Scholar
  18. 18.
    M. Altmann et al., Phys. Lett. B 616, 174 (2005).CrossRefADSGoogle Scholar
  19. 19.
    J. N. Abdurashitov et al., Phys. Rev. C 80, 015807 (2009).CrossRefADSGoogle Scholar
  20. 20.
    K. S. Hirata et al., Phys. Rev. Lett. 63, 16 (1989).CrossRefADSGoogle Scholar
  21. 21.
    Y. Fukuda et al., Phys. Rev. Lett. 81, 1158 (1998); J. Hosaka et al., Phys. Rev. D 73, 112001 (2006).CrossRefADSGoogle Scholar
  22. 22.
    Q. R. Ahmad et al. (SNO Collab.), Phys. Rev. Lett. 87, 071301 (2001); Q. R. Ahmad et al. (SNO Collab.), Phys. Rev. Lett. 89, 011301 (2002); B. Aharmim et al., Phys. Rev. C 72, 055502 (2005); B. Aharmim et al., Phys. Rev. Lett. 101, 111301 (2008).CrossRefADSGoogle Scholar
  23. 23.
    C. Arpesella et al., Phys. Lett. B 658, 101 (2008); C. Arpesella et al., Phys. Rev. Lett. 101, 091302 (2008); G. Bellini et al., “Measurement of the Solar 8B Neutrino Rate with a Liquid Scintillator Target and 3 MeV Energy Threshold in the Borexino Detector,” Phys. Rev. D 82, 033006 (2010).CrossRefADSGoogle Scholar
  24. 24.
    B. Achkar et al., “Search for Neutrino Oscillations at 15-Meters, 40-Meters, and 95-Meters from a Nuclear Power Reactor at Bugey,” Nucl. Phys. B 434, 503–534 (1995); G. Zacek et al., “Neutrino Oscillation Experiments at the Gosgen Nuclear Power Reactor,” Phys. Rev. D 34, 2621–2636 (1986); H. Kwon et al., “Search for Neutrino Oscillations at a Fission Reactor,” Phys. Rev. D 24, 1097–1111 (1981); G. S. Vidyakin et al., “Limitations on the Characteristics of Neutrino Oscillations,” JETP Lett. 5, 390–393 (1994); A. I. Afonin et al., “Anti-Electron-Neutrino Spectra at Two Distances from the Reactor of the Rovno Nuclear Power Plant: Search for Oscillations,” JETP Lett. 45, 247–251 (1987); Z. D. Greenwood et al., “Results of a Two Position Reactor Neutrino Oscillation Experiment,” Phys. Rev. D 53, 6054–6064 (1996); M. Apollonio et al. (CHOOZ), “Search for Neutrino Oscillations on a Long Base-Line at the CHOOZ Nuclear Power Station,” Eur. Phys. J. C 27, 331 (2003).CrossRefADSGoogle Scholar
  25. 25.
    G. Mention et al., “The Reactor Antineutrino Anomaly,” arXiv:1101.2755.Google Scholar
  26. 26.
    G. Bellini et al., “Observation of Geo-Neutrinos,” Phys. Lett. B 687, 299–304 (2010).CrossRefADSGoogle Scholar
  27. 27.
    T. Araki et al. (KamLAND Collab.), “Experimental Investigation of Geologically Produced Antineutrinos with KamLAND,” Nature 436, 499 (2005).CrossRefADSGoogle Scholar
  28. 28.
    G. L. Fogli et al., “Combined Analysis of KamLAND and Borexino Neutrino Signals from Th and U Decays in the Earth’s Interior,” Phys. Rev. D 82, 093006 (2010).CrossRefADSGoogle Scholar
  29. 29.
    Y. Ashie et al. (Super-Kamiokande Collab.), “Evidence for an Oscillatory Signature in Atmospheric Neutrino Oscillation,” Phys. Rev. Lett. 93, 101801 (2004).CrossRefADSGoogle Scholar
  30. 30.
    J. Hosaka et al. (Super-Kamiokande Collab.), “Three Flavor Neutrino Oscillation Analysis of Atmospheric Neutrinos in Super-Kamiokande,” Phys. Rev. D 74, 032002 (2006).CrossRefADSGoogle Scholar
  31. 31.
    M. Honda et al., “A New Calculation of the Atmospheric Neutrino Flux in a 3-Dimensional Scheme,” Phys. Rev. D 70, 043008 (2004); T. K. Gaisser et al., “Comparison of Atmospheric Neutrino Flux Calculations at Low Energies,” Phys. Rev. D 54, 5578 (1996); E. V. Bugaev et al., “Atmospheric Muon Flux at Sea Level, Underground and Underwater,” Phys. Rev. D 58, 054001 (1998); E. V. Bugaev and V. A. Naumov, “On the Interpretation of the Kamiokande Experiment,” Phys. Lett. B 232, 391 (1989); G. Fiorentini, V. A. Naumov, and F. L. Villante, “Atmospheric Neutrino Flux Supported by Recent Muon Experiments,” Phys. Lett. B 510, 173 (2001).CrossRefADSGoogle Scholar
  32. 32.
    C. Angelini et al. (BEBC Collab.), “New Experimental Limits on νμ → νe Oscillations,” Phys. Lett. B 179, 307 (1986); L. Borodovsky et al. (BNL Collab.), “Search for Muon-Neutrino Oscillations \(v_\mu \to \mu _e (\bar v_\mu \to \bar \mu _e )\) in a Wide Band Neutrino Beam,” Phys. Rev. Lett. 68, 274–277 (1992); D. Naples et al. (CCFR/NuTeV Collab.), “A High Statistics Search for \(v_e (\bar v_e ) \to v_\tau (\bar v_\tau )\) Oscillations,” Phys. Rev. D 59, 031101 (1999); E. Eskut et al. (CHORUS Collab.), “Final Results on νμ → ντ Oscillation from the CHORUS Experiment,” Nucl. Phys. B 793, 326–343 (2008); P. Astier et al. (NOMAD Collab.), “Search for νμ → νe Oscillations in the NOMAD Experiment,” Phys. Lett. B 570, 19–31 (2003); P. Astier et al. (NOMAD Collab.), “Final NOMAD Results on νμ → ντ and νe → ντ Oscillations Including a New Search for Appearance Using Hadronic Decays,” Nucl. Phys. B 611, 3–39 (2001)CrossRefADSGoogle Scholar
  33. 33.
    A. A. Aguilar-Arevalo et al. (The MiniBooNE Collab.), “A Search for Electron Neutrino Appearance at the Δm 2 ∼ 1 EV2 Scale,” Phys. Rev. Lett. 98, 231801 (2007); A. A. Aguilar-Arevalo et al. (The MiniBooNE Collab.), “Event Excess in the MiniBooNE Search for \(\bar v_\mu \to \bar v_e\) Oscillations,” Phys. Rev. Lett. 105, 181801 (2010).CrossRefADSGoogle Scholar
  34. 34.
    M. H. Ahn et al. (K2K Collab.), “Measurement of Neutrino Oscillation by the K2K Experiment,” Phys. Rev. D 74, 072003 (2006); S. Yamamoto et al. (K2K Collab.), “An Improved Search for νμ → νe Oscillation in a Long-Baseline Accelerator Experiment,” Phys. Rev. Lett. 96, 181801 (2006)CrossRefADSGoogle Scholar
  35. 35.
    N. Agafonova et al. (OPERA Collab.), “Observation of a First ντ Candidate in the OPERA Experiment in the CNGS Beam,” Phys. Lett. B 691, 138–145 (2010)CrossRefADSGoogle Scholar
  36. 36.
    T. Bloxham et al. (COBRA Collab.), “First Results on Double Beta Decay Modes of Cd, Te and Zn Isotopes with the COBRA Experiment,” Phys. Rev. C 76, 025501 (2007); E. Andreotti et al. (CUORICINO Collab.), “130Te Neutrinoless Double-Beta Decay with CUORICINO,” arXiv:1012.3266 (2010); I. Abt et al., “A New 76Ge Double Beta Decay Experiment at LNGS,” arXiv:hep-ex/0404039 (2004); R. Luscher et al., “Search for Beta Beta Decay in 136Xe: New Results from the Gotthard Experiment,” Phys. Lett. B 434, 407–414 (1998); C. E. Aalseth et al. (IGEX Collab.), “The IGEX 76Ge Neutrinoless Double-Beta Decay Experiment: Prospects for Next Generation Experiments,” Phys. Rev. D 65, 092007 (2002); J. Argyriades (NEMO Collab.), “Measurement of the Double Beta Decay Half-Life of 150Nd and Search for Neutrinoless Decay Modes with the NEMO-3 Detector,” Phys. Rev. C 80, 032501 (2009); R. Arnold et al., (NEMO Collab.), “First Results of the Search of Neutrinoless Double Beta Decay with the NEMO 3 Detector,” Phys. Rev. Lett. 95, 182302 (2005)CrossRefADSGoogle Scholar
  37. 37.
    H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, “The Evidence for the Observation of 0nu Beta Beta Decay: The Identification of 0nu Beta Beta Events from the Full Spectra,” Mod. Phys. Lett. A 21, 1547–1566 (2006); H. V. Klapdor-Kleingrothaus et al., “Search for Neutrinoless Double Beta Decay with Enriched 76Ge in Gran Sasso 1990–2003,” Phys. Lett. B 586, 198–212 (2004)CrossRefADSGoogle Scholar
  38. 38.
    C. E. Aalseth et al., “Comment on’ Evidence for Neutrinoless Double Beta Decay’,” Mod. Phys. Lett. A 17, 1475–1478 (2002); F. Feruglio, A. Strumia, and F. Vissani, “Neutrino Oscillations and Signals in β and (ββ) Experiments,” Nucl. Phys. B 637, 345–377 (2002)CrossRefADSGoogle Scholar
  39. 39.
    M. Danilov et al., “Detection of Very Small Neutrino Masses in Double-Beta Decay Using Laser Tagging,” Phys. Lett. B 480, 12–18 (2000); C. E. Aalseth et al. (Majorana Collab.), “The Majorana Neutrinoless Double-Beta Decay Experiment,” Phys. At. Nucl. 67, 2002 (2004); H. Ejiri, “Nuclear Spin Isospin Responses for Low-Energy Neutrinos,” Phys. Rep. 338, 265–351 (2000); C. Chen Mark (SNO+ Collab.), “The SNO+ Experiment,” arXiv:0810.3694 (2008).CrossRefADSGoogle Scholar
  40. 40.
    C. A. Heusch, “Can Heavy Majorana Neutrinos Be Found in TeV Electron-Electron Scattering? The Nuclear Connection,” Nucl. Phys. A 629, 545 (1998); C. A. Heusch and P. Minkowski, “Lepton Flavour Violation Induced by Heavy Majorana Neutrinos,” Nucl. Phys. B 416, 3 (1994); C. A. Heusch and P.Minkowski, “A Strategy for Discovering Heavy Neutrinos,” Phys. Lett. B 374, 116 (1996); J. K. Singhal et al., “Heavy Neutrino Mixing Effects in Helicity Amplitudes for the Process μ+μW + W ,” Phys. Rev. D 63, 017302 (2000)CrossRefADSGoogle Scholar
  41. 41.
    Y. Hayato et al. (T2K Collab.), “Letter of Intent: Neutrino Oscillation Experiment at JHF,” http://neu-trino.kek.jp/jhfnu/loi/loi-JHFcor.pdf
  42. 42.
    I. Ambats et al. (NovA Collab.), “NOvA Proposal to Build a 30-Kiloton Off-Axis Detector to Study Neutrino Oscillations in the Fermilab NuMI Beamline,” arXiv:hep-ex/0503053 (2005); D. Ayres et al., “Letter of Intent to Build an Off-Axis Detector to Study Numu to Nue Oscillations with the NuMI Neutrino Beam,” arXiv:hep-ex/0210005 (2002).Google Scholar
  43. 43.
    X. Guo et al. (Daya Bay Collab.), “A Precision Measurement of the Neutrino Mixing Angle θ13 Using Reactor Antineutrinos at Daya Bay,” arXiv:hep-ex/0701029Google Scholar
  44. 44.
    F. Ardellier et al. (Double Chooz Collab.), “Double Chooz: A Search for the Neutrino Mixing Angle 13,” arXiv:hep-ex/0606025 (2006).Google Scholar
  45. 45.
  46. 46.
    J. Bernabeu et al., “EURONU WP6 2009 Yearly Report: Update of the Physics Potential of Nufact, Superbeams and Betabeams,” arXiv:1005.3146 (2010).Google Scholar
  47. 47.
    P. Zucchelli, “A Novel Concept for a Neutrino Factory: The Beta-Beam,” Phys. Lett. B 532, 166–172 (2002), http://www.nu.to.infn.it/Neutrino-Beta-Beam/ CrossRefADSGoogle Scholar
  48. 48.
  49. 49.
  50. 50.

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Laboratory of Nuclear ProblemsJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations