Skip to main content
Log in

QCD coupling constant below 1 GeV in the poincare-covariant model

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The behavior of the running coupling constant α s (Q 2) phenomenologically parameterized in the region of Q < 1 GeV is considered within the framework of the Poincare-covariant quark model in a variety of regimes. An analysis was carried out for pseudoscalar and vector mesons with the lepton masses and decay constants (obtained by the model calculations) required to match their experimental counterparts. It shows that the constant α s is likely to behave with αcrit = α s (Q 2 = 0) ∼ 0.667 − 0.821 in the case of a frozen regime and αcrit =0.300 − 0.692 for peaked curves, which follows from the experimental values of the leptonic decay constants and masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Richardson, “The Heavy Quark Potential and the Γ, J/Ψ Systems,” Phys. Lett. B 82, 272–274 (1979).

    Article  ADS  Google Scholar 

  2. S. Godfrey and N. Isgur, “Mesons in a Relativized Quark Model with Chromodynamics,” Phys. Rev. D: Part. Fields 32, 189–231 (1985).

    Article  ADS  Google Scholar 

  3. Y. L. Dokshitzer, V. A. Khoze, and S. I. Troian, “Specific Features of Heavy Quark Production. LPHD Approach to Heavy Particle Spectra,” Phys. Rev. D: Part. Fields 53, 89–119 (1996).

    Article  ADS  Google Scholar 

  4. A. M. Badalian and D. S. Kuzmenko, “Freezing of QCD Coupling Alpha(S) Affects the Short Distance Static Potential,” Phys. Rev. D: Part. Fields 65, 016004 (2002).

    Article  ADS  Google Scholar 

  5. A. I. Alekseev and B. A. Arbuzov, “Analyticity and Minimality of Nonperturbative Contributions in Perturbative Region for Alpha(S)-Bar,” Mod. Phys. Lett. A 13, 1747–1756 (1998).

    Article  ADS  Google Scholar 

  6. P. Boucaud et al., “Lattice Calculation of 1/p 2 Corrections to Alpha(S) and of Lambda(QCD) in the MOM Scheme,” JHEP 04, 006 (2000).

    Article  ADS  Google Scholar 

  7. B. R. Webber, “QCD Power Corrections from a Simple Model for the Running Coupling,” JHEP 10, 012 (1998).

    Article  ADS  Google Scholar 

  8. D. V. Shirkov and I. L. Solovtsov, “Analytic Model for the QCD Running Coupling with Universal Alpha(S)-Bar(0) Value,” Phys. Rev. Lett. 79, 1209–1212 (1997).

    Article  ADS  Google Scholar 

  9. A. V. Nesterenko, “Analytic Invariant Charge in QCD,” Int. J. Mod. Phys. A 18, 5475–5520 (2003).

    Article  ADS  MATH  Google Scholar 

  10. A. P. Bakulev, “Global Fractional Analytic Perturbation Theory in QCD with Selected Applications,” Fiz. Elem. Chastits At. Yadra 40, 1351–1431 (2009) [Phys. Part. Nucl. 40, 715 (2009)].

    Google Scholar 

  11. Yu. S. Kalashnikova, A. V. Nefediev, and Yu. A. Simonov, “QCD String in Light-Light and Heavy-Light Mesons,” Phys. Rev. D: Part. Fields 64, 014037 (2001).

    Article  ADS  Google Scholar 

  12. A. M. Badalian and D. S. Kuzmenko, “A Short Distance Quark Antiquark Potential,” Phys. At. Nucl 67, 561–563 (2004).

    Article  Google Scholar 

  13. K. A. Milton, I. L. Solovtsov, and O. P. Solovtsova, “An Analytic Method of Describing R-Related Quantities in QCD,” Mod. Phys. Lett. A 21, 1355–1368 (2006).

    Article  ADS  MATH  Google Scholar 

  14. K. A. Milton, I. L. Solovtsov, and O. P. Solovtsova, “Remark on the Perturbative Component of Inclusive Tau Decay,” Phys. Rev. D: Part. Fields 65, 076009 (2002).

    Article  ADS  Google Scholar 

  15. D. V. Shirkov and I. L. Solovtsov, “Ten Years of the Analytic Perturbation Theory in QCD,” Theor. Math. Phys. 150, 132–152 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  16. A. V. Nesterenko, “New Analytic Running Coupling in Spacelike and Timelike Regions,” Phys. Rev. D: Part. Fields 64, 116009 (2001).

    Article  ADS  Google Scholar 

  17. M. Baldicchi and G. M. Prosperi, “Running Coupling Constant and Masses in QCD, the Meson Spectrum,” AIP Conf. Proc. 756, 152–161 (2005).

    Article  ADS  Google Scholar 

  18. A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, “Fractional Analytic Perturbation Theory in Minkowski Space and Application to Higgs Boson Decay into a \(b\bar b\) Pair,” Phys. Rev. D: Part. Fields 75, 056005 (2007).

    Article  ADS  Google Scholar 

  19. M. Baldicchi, G. M. Prosperi, and C. Simolo, “Extracting Infrared QCD Coupling from Meson Spectrum,” http://arxiv.org/pdf/hep-ph/0611087.

  20. M. Baldicchi et al., “Bound State Approach to the QCD Coupling at Low Energy Scales,” Phys. Rev. Lett. 99, 242001 (2007).

    Article  ADS  Google Scholar 

  21. M. Baldicchi and G. M. Prosperi, “Regge Trajectories and Quarkonium Spectrum from a First Principle Salpeter Equation,” Phys. Lett. B 436, 145–152 (1998).

    Article  ADS  Google Scholar 

  22. G. M. Prosperi and M. Baldicchi, “Bethe-Salpeter and Dyson-Schwinger Equations in a Wilson Loop Context in QCD, Effective Mass Operator, q Anti-q Spectrum,” Fizika B 8, 251–260 (1999).

    ADS  Google Scholar 

  23. A. Deur et al., “Experimental Determination of the Effective Strong Coupling Constant,” Phys. Lett. B 650, 244–248 (2007).

    Article  ADS  Google Scholar 

  24. A. Deur et al., “Determination of the Effective Strong Coupling Constant α s, g 1(Q 2) from CLAS Spin Structure Function Data,” Phys. Lett. B 665, 349–351 (2008).

    Article  ADS  Google Scholar 

  25. F. Coester and W. N. Polyzou, “Relativistic Quantum Mechanics of Particles with Direct Interactions,” Phys. Rev. D: Part. Fields 26, 1348–1367 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  26. B. D. Keister and W. N. Polyzou, “Relativistic Hamiltonian Dynamics in Nuclear and Particle Physics,” Adv. Nucl. Phys. 20, 225–479 (1991).

    Google Scholar 

  27. A. F. Krutov and V. E. Troitskii, “Instant Form of Poincaré-Invariant Quantum Mechanics and Description of the Structure of Composite Systems,” Fiz. Elem. Chastits At. Yadra 40, 268–318 (2009) [Phys. Part. Nucl. 40, 136 (2009)].

    Google Scholar 

  28. P. A. M. Dirac, “Forms of Relativistic Dynamics,” Rev. Mod. Phys. 21, 392–399 (1949).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. D. Gromes, “Theoretical Understanding of Quark Forces,” Preprint No. HD-THEP-89-17, Inst. Theor. Phys. (Heidelberg, 1989).

  30. K. Nakamura et al., “The Review of Particle Physics,” J. Phys. G 37, 075021 (2010).

    Article  ADS  Google Scholar 

  31. S. M. Bilenkii, Basics of Introduction to Feynman Diagrams and Electroweak Interactions Physics (Energoatomizdat, Moscow, 1990; Editions Frontieres, 1994).

    Google Scholar 

  32. V. V. Andreev, “Description of Lepton Decays in Poincaré-Covariant Quark Model,” Vest. NAN Belarusi, Ser. Fiz.-Mat. No. 2, 93–98 (2000).

  33. V. V. Andreev and A. F. Krutov, “Compton Polarizability of Kaons in Relativistic Hamilton Dynamics,” Vestn. Samarsk. Univ., Estestv.-Nauch. Ser., Spec. Iss., 111–127 (2004).

  34. A. F. Krutov, “Electroweak Properties of Light Mesons in the Relativistic Model of Constituent Quarks,” Yad. Fiz. 60, 1442–1450 (1997) [Phys. At. Nucl. 60, 1305 (1997)].

    Google Scholar 

  35. A. F. Krutov and V. E. Troitskii, “Construction of Form Factors of Composite Systems by a Generalized Wigner-Eckart Theorem for the Poincaré Group,” Teor. Mat. Fiz. 143, 258–277 (2005) [Theor. Math. Phys. 143, 704 (2005)].

    MathSciNet  Google Scholar 

  36. W. Jaus, “Relativistic Constituent Quark Model of Electroweak Properties of Light Mesons,” Phys. Rev. D: Part. Fields 44, 2851–2859 (1991).

    Article  ADS  Google Scholar 

  37. D. Ebert, R. N. Faustov, and V. O. Galkin, “Quark-Antiquark Potential with Retardation and Radiative Contributions and the Heavy Quarkonium Mass Spectra,” Phys. Rev. D: Part. Fields 62, 034014 (2000).

    Article  ADS  Google Scholar 

  38. E. V. Balandina et al., “Semileptonic Decays of Pseudoscalar Mesons in the Instant Form of Relativistic Hamiltonian Dynamics,” Yad. Fiz. 63, 301–311 (2000) [Phys. At. Nucl. 63, 244 (2000)].

    Google Scholar 

  39. V. B. Zlokazov, “Mathematical Methods of Analysis of Experimental Spectra and Spectrum-Like Distributions,” Fiz. Elem. Chastits At. Yadra 16, 1126–1163 (1985) [Sov. J. Part. Nucl. 16, 501 (1985)].

    Google Scholar 

  40. B. Aubert et al., “A Search for B +→ τ+ν with Hadronic B Tags,” Phys. Rev. D: Part. Fields 77, 011107 (2008).

    Article  ADS  Google Scholar 

  41. B. Aubert et al., “A Search for B + → τ+ν Phys. Rev. D: Part. Fields 76, 052002 (2007).

    Article  ADS  Google Scholar 

  42. I. Adachi et al., “Measurement of \(B \to \tau + \bar \nu _\tau\) Decay with a Semileptonic Tagging Method,” http://arxiv.org/pdf/hep-ex/, 3834.

  43. A. J. Schwartz, “B + and D +s Decay Constants from Belle and Babar,” AIP Conf. Proc. 1182, 299–308 (2009).

    Article  ADS  Google Scholar 

  44. B. Aubert et al., “Search for the Rare Leptonic Decays B +l + + νl (l = e, μ),” Phys. Rev. D: Part. Fields 79, 091101 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  45. A. Khan Ali et al., “B Meson Decay Constants from NRQCD,” Phys. Lett. B 427, 132–140 (1998).

    Article  ADS  Google Scholar 

  46. A. A. Penin and M. Steinhauser, “Heavy-Light Meson Decay Constant from QCD Sum Rules in Three-Loop Approximation,” Phys. Rev. D: Part. Fields 65, 054006 (2002).

    Article  ADS  Google Scholar 

  47. A. Gray et al., “The B Meson Decay Constant from Unquenched Lattice QCD,” Phys. Rev. Lett. 95, 212001 (2005).

    Article  ADS  Google Scholar 

  48. A. V. Nesterenko and J. Papavassiliou, “The Massive Analytic Invariant Charge in QCD,” Phys. Rev. D: Part. Fields 71, 016009 (2005).

    Article  ADS  Google Scholar 

  49. G. Ganbold, “QCD Running Coupling in Low-Energy Region,” Phys. Rev. D: Part. Fields 81, 094008 (2010).

    Article  ADS  Google Scholar 

  50. A. Deur, “The Strong Coupling Constant at Large Distances,” AIP Conf. Proc. 1149, 281–284 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Andreev, 2011, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2011, No. 4(167), pp. 581–596.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, V.V. QCD coupling constant below 1 GeV in the poincare-covariant model. Phys. Part. Nuclei Lett. 8, 347–355 (2011). https://doi.org/10.1134/S1547477111040030

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477111040030

Keywords

Navigation