Physics of Particles and Nuclei Letters

, Volume 8, Issue 4, pp 347–355 | Cite as

QCD coupling constant below 1 GeV in the poincare-covariant model

  • V. V. Andreev
Physics of Elementary Particles and Atomic Nuclei. Theory

Abstract

The behavior of the running coupling constant α s (Q 2) phenomenologically parameterized in the region of Q < 1 GeV is considered within the framework of the Poincare-covariant quark model in a variety of regimes. An analysis was carried out for pseudoscalar and vector mesons with the lepton masses and decay constants (obtained by the model calculations) required to match their experimental counterparts. It shows that the constant α s is likely to behave with αcrit = α s (Q 2 = 0) ∼ 0.667 − 0.821 in the case of a frozen regime and αcrit =0.300 − 0.692 for peaked curves, which follows from the experimental values of the leptonic decay constants and masses.

Keywords

Vector Meson Nucleus Letter Leptonic Decay Strong Coupling Constant Analytic Perturbation Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Richardson, “The Heavy Quark Potential and the Γ, J/Ψ Systems,” Phys. Lett. B 82, 272–274 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    S. Godfrey and N. Isgur, “Mesons in a Relativized Quark Model with Chromodynamics,” Phys. Rev. D: Part. Fields 32, 189–231 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    Y. L. Dokshitzer, V. A. Khoze, and S. I. Troian, “Specific Features of Heavy Quark Production. LPHD Approach to Heavy Particle Spectra,” Phys. Rev. D: Part. Fields 53, 89–119 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    A. M. Badalian and D. S. Kuzmenko, “Freezing of QCD Coupling Alpha(S) Affects the Short Distance Static Potential,” Phys. Rev. D: Part. Fields 65, 016004 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    A. I. Alekseev and B. A. Arbuzov, “Analyticity and Minimality of Nonperturbative Contributions in Perturbative Region for Alpha(S)-Bar,” Mod. Phys. Lett. A 13, 1747–1756 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    P. Boucaud et al., “Lattice Calculation of 1/p 2 Corrections to Alpha(S) and of Lambda(QCD) in the MOM Scheme,” JHEP 04, 006 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    B. R. Webber, “QCD Power Corrections from a Simple Model for the Running Coupling,” JHEP 10, 012 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    D. V. Shirkov and I. L. Solovtsov, “Analytic Model for the QCD Running Coupling with Universal Alpha(S)-Bar(0) Value,” Phys. Rev. Lett. 79, 1209–1212 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    A. V. Nesterenko, “Analytic Invariant Charge in QCD,” Int. J. Mod. Phys. A 18, 5475–5520 (2003).ADSMATHCrossRefGoogle Scholar
  10. 10.
    A. P. Bakulev, “Global Fractional Analytic Perturbation Theory in QCD with Selected Applications,” Fiz. Elem. Chastits At. Yadra 40, 1351–1431 (2009) [Phys. Part. Nucl. 40, 715 (2009)].Google Scholar
  11. 11.
    Yu. S. Kalashnikova, A. V. Nefediev, and Yu. A. Simonov, “QCD String in Light-Light and Heavy-Light Mesons,” Phys. Rev. D: Part. Fields 64, 014037 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    A. M. Badalian and D. S. Kuzmenko, “A Short Distance Quark Antiquark Potential,” Phys. At. Nucl 67, 561–563 (2004).CrossRefGoogle Scholar
  13. 13.
    K. A. Milton, I. L. Solovtsov, and O. P. Solovtsova, “An Analytic Method of Describing R-Related Quantities in QCD,” Mod. Phys. Lett. A 21, 1355–1368 (2006).ADSMATHCrossRefGoogle Scholar
  14. 14.
    K. A. Milton, I. L. Solovtsov, and O. P. Solovtsova, “Remark on the Perturbative Component of Inclusive Tau Decay,” Phys. Rev. D: Part. Fields 65, 076009 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    D. V. Shirkov and I. L. Solovtsov, “Ten Years of the Analytic Perturbation Theory in QCD,” Theor. Math. Phys. 150, 132–152 (2007).MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    A. V. Nesterenko, “New Analytic Running Coupling in Spacelike and Timelike Regions,” Phys. Rev. D: Part. Fields 64, 116009 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    M. Baldicchi and G. M. Prosperi, “Running Coupling Constant and Masses in QCD, the Meson Spectrum,” AIP Conf. Proc. 756, 152–161 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, “Fractional Analytic Perturbation Theory in Minkowski Space and Application to Higgs Boson Decay into a \(b\bar b\) Pair,” Phys. Rev. D: Part. Fields 75, 056005 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    M. Baldicchi, G. M. Prosperi, and C. Simolo, “Extracting Infrared QCD Coupling from Meson Spectrum,” http://arxiv.org/pdf/hep-ph/0611087.
  20. 20.
    M. Baldicchi et al., “Bound State Approach to the QCD Coupling at Low Energy Scales,” Phys. Rev. Lett. 99, 242001 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    M. Baldicchi and G. M. Prosperi, “Regge Trajectories and Quarkonium Spectrum from a First Principle Salpeter Equation,” Phys. Lett. B 436, 145–152 (1998).ADSCrossRefGoogle Scholar
  22. 22.
    G. M. Prosperi and M. Baldicchi, “Bethe-Salpeter and Dyson-Schwinger Equations in a Wilson Loop Context in QCD, Effective Mass Operator, q Anti-q Spectrum,” Fizika B 8, 251–260 (1999).ADSGoogle Scholar
  23. 23.
    A. Deur et al., “Experimental Determination of the Effective Strong Coupling Constant,” Phys. Lett. B 650, 244–248 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    A. Deur et al., “Determination of the Effective Strong Coupling Constant αs, g 1(Q 2) from CLAS Spin Structure Function Data,” Phys. Lett. B 665, 349–351 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    F. Coester and W. N. Polyzou, “Relativistic Quantum Mechanics of Particles with Direct Interactions,” Phys. Rev. D: Part. Fields 26, 1348–1367 (1982).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    B. D. Keister and W. N. Polyzou, “Relativistic Hamiltonian Dynamics in Nuclear and Particle Physics,” Adv. Nucl. Phys. 20, 225–479 (1991).Google Scholar
  27. 27.
    A. F. Krutov and V. E. Troitskii, “Instant Form of Poincaré-Invariant Quantum Mechanics and Description of the Structure of Composite Systems,” Fiz. Elem. Chastits At. Yadra 40, 268–318 (2009) [Phys. Part. Nucl. 40, 136 (2009)].Google Scholar
  28. 28.
    P. A. M. Dirac, “Forms of Relativistic Dynamics,” Rev. Mod. Phys. 21, 392–399 (1949).ADSMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    D. Gromes, “Theoretical Understanding of Quark Forces,” Preprint No. HD-THEP-89-17, Inst. Theor. Phys. (Heidelberg, 1989).Google Scholar
  30. 30.
    K. Nakamura et al., “The Review of Particle Physics,” J. Phys. G 37, 075021 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    S. M. Bilenkii, Basics of Introduction to Feynman Diagrams and Electroweak Interactions Physics (Energoatomizdat, Moscow, 1990; Editions Frontieres, 1994).Google Scholar
  32. 32.
    V. V. Andreev, “Description of Lepton Decays in Poincaré-Covariant Quark Model,” Vest. NAN Belarusi, Ser. Fiz.-Mat. No. 2, 93–98 (2000).Google Scholar
  33. 33.
    V. V. Andreev and A. F. Krutov, “Compton Polarizability of Kaons in Relativistic Hamilton Dynamics,” Vestn. Samarsk. Univ., Estestv.-Nauch. Ser., Spec. Iss., 111–127 (2004).Google Scholar
  34. 34.
    A. F. Krutov, “Electroweak Properties of Light Mesons in the Relativistic Model of Constituent Quarks,” Yad. Fiz. 60, 1442–1450 (1997) [Phys. At. Nucl. 60, 1305 (1997)].Google Scholar
  35. 35.
    A. F. Krutov and V. E. Troitskii, “Construction of Form Factors of Composite Systems by a Generalized Wigner-Eckart Theorem for the Poincaré Group,” Teor. Mat. Fiz. 143, 258–277 (2005) [Theor. Math. Phys. 143, 704 (2005)].MathSciNetGoogle Scholar
  36. 36.
    W. Jaus, “Relativistic Constituent Quark Model of Electroweak Properties of Light Mesons,” Phys. Rev. D: Part. Fields 44, 2851–2859 (1991).ADSCrossRefGoogle Scholar
  37. 37.
    D. Ebert, R. N. Faustov, and V. O. Galkin, “Quark-Antiquark Potential with Retardation and Radiative Contributions and the Heavy Quarkonium Mass Spectra,” Phys. Rev. D: Part. Fields 62, 034014 (2000).ADSCrossRefGoogle Scholar
  38. 38.
    E. V. Balandina et al., “Semileptonic Decays of Pseudoscalar Mesons in the Instant Form of Relativistic Hamiltonian Dynamics,” Yad. Fiz. 63, 301–311 (2000) [Phys. At. Nucl. 63, 244 (2000)].Google Scholar
  39. 39.
    V. B. Zlokazov, “Mathematical Methods of Analysis of Experimental Spectra and Spectrum-Like Distributions,” Fiz. Elem. Chastits At. Yadra 16, 1126–1163 (1985) [Sov. J. Part. Nucl. 16, 501 (1985)].Google Scholar
  40. 40.
    B. Aubert et al., “A Search for B +→ τ+ν with Hadronic B Tags,” Phys. Rev. D: Part. Fields 77, 011107 (2008).ADSCrossRefGoogle Scholar
  41. 41.
    B. Aubert et al., “A Search for B + → τ+ν Phys. Rev. D: Part. Fields 76, 052002 (2007).ADSCrossRefGoogle Scholar
  42. 42.
    I. Adachi et al., “Measurement of \(B \to \tau + \bar \nu _\tau\) Decay with a Semileptonic Tagging Method,” http://arxiv.org/pdf/hep-ex/, 3834.
  43. 43.
    A. J. Schwartz, “B + and D s+ Decay Constants from Belle and Babar,” AIP Conf. Proc. 1182, 299–308 (2009).ADSCrossRefGoogle Scholar
  44. 44.
    B. Aubert et al., “Search for the Rare Leptonic Decays B +l + + νl (l = e, μ),” Phys. Rev. D: Part. Fields 79, 091101 (2009).ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    A. Khan Ali et al., “B Meson Decay Constants from NRQCD,” Phys. Lett. B 427, 132–140 (1998).ADSCrossRefGoogle Scholar
  46. 46.
    A. A. Penin and M. Steinhauser, “Heavy-Light Meson Decay Constant from QCD Sum Rules in Three-Loop Approximation,” Phys. Rev. D: Part. Fields 65, 054006 (2002).ADSCrossRefGoogle Scholar
  47. 47.
    A. Gray et al., “The B Meson Decay Constant from Unquenched Lattice QCD,” Phys. Rev. Lett. 95, 212001 (2005).ADSCrossRefGoogle Scholar
  48. 48.
    A. V. Nesterenko and J. Papavassiliou, “The Massive Analytic Invariant Charge in QCD,” Phys. Rev. D: Part. Fields 71, 016009 (2005).ADSCrossRefGoogle Scholar
  49. 49.
    G. Ganbold, “QCD Running Coupling in Low-Energy Region,” Phys. Rev. D: Part. Fields 81, 094008 (2010).ADSCrossRefGoogle Scholar
  50. 50.
    A. Deur, “The Strong Coupling Constant at Large Distances,” AIP Conf. Proc. 1149, 281–284 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. V. Andreev
    • 1
  1. 1.Skorina State UniversityGomelBelarus

Personalised recommendations