Fractal calculus (H) and some applications



A short history, background, and some applications of the Fractal calculus.


Hypergeometric Function Fractal Calculus Nucleus Letter Hypergeometric Series Order Ordinary Differential Equa Tion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Gasper and M. Rahman, Basic Hypergeometric Series (Cambridge Univ., Cambridge, 1990).MATHGoogle Scholar
  2. 2.
    M. Kaku, Strings, Conformal Fields, and M — Theory (Springer, New York, 2000).MATHCrossRefGoogle Scholar
  3. 3.
    N. Koblitz, P-Adic Numbers, P-Adic Analysis, and Zeta-Functions (Springer, New York, Heidelberg, Berlin, 1977).MATHCrossRefGoogle Scholar
  4. 4.
    I. Lomidze, “On Some Generalizations of the Vandermonde Matrix and Their Relations with the Eiler Beta-Function,” Georgian Math. J. 1, 405 (1994).MATHCrossRefGoogle Scholar
  5. 5.
    I. Lomidze and N. Makhaldiani, in progress.Google Scholar
  6. 6.
    N. V. Makhaldiani, “Number Fields Dynamics and the Compactification of Space Problem in the Unified Theories of Fields and Strings,” JINR Commun. R2-88-916 (Dubna, 1988).Google Scholar
  7. 7.
    N. Makhaldiani, “Adelic Universe and Cosmological Constant,” JINR Commun. E2-2003-215 (Dubna, 2003); arXiv:hep-th/0312291 (2003).Google Scholar
  8. 8.
    W. Miller, Jr., Symmetry and Separation of Variables (Addison-Wesley, London, 1977).MATHGoogle Scholar
  9. 9.
    L. B. Okun, Leptons and Quarks (North-Holland, Amsterdam, 1982).Google Scholar
  10. 10.
    V. S. Vladimirov, Russ. Math. Surv. 43, 19 (1988).MATHCrossRefGoogle Scholar
  11. 11.
    S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Laboratory of Information Technologies Joint Institute for Nuclear Research DubnaMoscow RegionRussia

Personalised recommendations