Physics of Particles and Nuclei Letters

, Volume 8, Issue 3, pp 282–292 | Cite as

Common structures of quantum field theories and lattice systems through boundary symmetry

  • Boyka Aneva
Article
  • 28 Downloads

Abstract

The sine-Gordon model and affine Toda field theories on the half-line, on the one hand, the XXZ spin chain with nondiagoual boundary terms, and interacting many-body lattice systems with a flow, on the other, have a common characteristic. They possess nonlocal conserved boundary charges, generating the Askey-Wilson algebra, a coideal subalgebra of the bulk quantized affine symmetry. We argue that the boundary Askey-Wilson symmetry is the deep algebraic property allowing for integrability of the physical system in consideration.

Keywords

Nucleus Letter Bethe Equation Sine Gordon Model Asymmetric Simple Exclusion Process Transition Rate Matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Mezincescu and R. I. Nepomechie, Int. J. Mod. Phys. A 13, 2747 (1998).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    G. W. Delius and N. J. MacKay, Comm. Math. Phys. 233, 173 (2003).MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    A. Doikou, J. Stat. Mech., 12005 (2005).Google Scholar
  4. 4.
    A. Nichols, V. Rittenberg, and J. de Gier, J. Stat. Mech., 003 (2005).Google Scholar
  5. 5.
    B. Aneva, M. Chaichian, and P. P. Kulish, J. Phys. A 41, 135201 (2008).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    F. H. L. Essler and V. Rittenberg, J. Phys. A 29, 3375 (1996).MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    P. Baseilhac and K. Koizumi, Nucl. Phys. B 720, 325 (2005).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    P. Baseilhac and K. Koizumi, J. Stat. Mech., 09006 (2007).Google Scholar
  9. 9.
    P. B. Wiegmann and A. V. Zabrodin, Nucl. Phys. B 451, 699 (1995).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    P. Baseilhac, Nucl. Phys. B 705, 605 (2005); Nucl. Phys. B 709, 491 (2005).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    J. de Gier and F. Essler, Phys. Rev. Lett. 95, 240601 (2005); J. Stat. Mech., 12011 (2006); J. Phys. A 41, 485002 (2008).MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Jimbo, Lett. Math. Phys. 10, 63 (1985); Lett. Math. Phys. 11, 246 (1986).MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    V. Chari and A. Pressley, in Proceedings of the 16th CMS Conference (Amer. Math. Soc., Providence, RI, 1995), p. 59.Google Scholar
  14. 14.
    N. Yu. Reshetikhin and M. A. Semenov-Tian-Shansky, Lett. Math. Phys. 19, 133 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    P. Baseilhac and G. W. Delius, J. Phys. A 34, 8259 (2001).MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    P. Baseilhac and K. Koizumi, Nucl. Phys. B 649, 491 (2003).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    G. M. Schüetz, in Phase Transitions and Critical Phenomena, Ed. by C. Domb and J. Lebowitz, Vol. 19 (Academic, London, 2000).Google Scholar
  18. 18.
    R. A. Blythe and M. R. Evans, J. Phys. A 40, R333 (2007).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    B. Derrida, Phys. Rep. 301, 65 (1998), and references therein.MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    M. Uchliama, T. Sasamoto, and M. Wadati, J. Phys. A 37, 4985 (2004).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    B. Aneva, J. Phys. A 40, 11677 (2007).MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    P. Baseilhac, J. Phys. A 39, 11 773 (2006).MathSciNetCrossRefGoogle Scholar
  23. 23.
    T. Sasamoto, J. Phys. A 32, 7109 (1999).MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    R. Koekoek and R. F. Swarttouw, Report 98-17 (Delft Univ. of Technology, Delft, 1998).Google Scholar
  25. 25.
    R. A. Askey and J. A. Wilson, Mem. Am. Math. Soc. 54, 319 (1985).MathSciNetGoogle Scholar
  26. 26.
    T. Koornwinder, SIGMA 3, 063 (2007).MathSciNetGoogle Scholar
  27. 27.
    E. A. Van Doorn and P. Schrijner, J. Austr. Math. Soc. B 37, 121 (1995).MATHCrossRefGoogle Scholar
  28. 28.
    V. Chari and A. Pressley, Comm. Math. Phys. 142, 261 (1991).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • Boyka Aneva
    • 1
    • 2
  1. 1.Theory DivisionCERNGeneva 23Switzerland
  2. 2.INRNEBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations