Advertisement

Physics of Particles and Nuclei Letters

, Volume 8, Issue 1, pp 1–7 | Cite as

Elements of nonequilibrium (ћ, k) dynamics at zero and finite temperatures

  • O. N. Golubjeva
  • A. D. Sukhanov
Physics of Elementary Particles and Atomic Nuclei. Theory

Abstract

A method for the development of elements of nonequilibrium (ℏ, k) dynamics without the use of the Schrödinger equation is proposed. This method is based on the generalization of the Fokker-Planck and Hamilton-Jacoby equations by the successive account of the stochastic action of vacuum (quantum thermostat). It is shown that nonequilibrium wave functions in the presence of quantum-thermal diffusion in vacuum describe the approximation to the state of generalized thermal equilibrium both at zero and finite temperatures. They can be used as the basis for a universal description of transport processes.

Keywords

Drift Velocity Nucleus Letter Lagrangian Density Planck Equation Effective Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Sukhanov, Teor. Mat. Fiz. 154, 185 (2008) [Theor. Math. Phys. 154, 153 (2008)].MathSciNetGoogle Scholar
  2. 2.
    A. D. Sukhanov and O. N. Golubeva, Teor. Mat. Fiz. 160, 369 (2009) [Theor. Math. Phys. 160, 1177 (2009)].MathSciNetGoogle Scholar
  3. 3.
    A. D. Sukhanov, Teor. Mat. Fiz. 148, 295 (2006) [Theor. Math. Phys. 148, 1123 (2006)].MathSciNetGoogle Scholar
  4. 4.
    A. I. Anselm, Principles of Statistical Physics and Thermodynamics (Nauka, St.-Petersburg, Moscow, 2007), p. 338 [in Russian].Google Scholar
  5. 5.
    A. D. Sukhanov, Teor. Mat. Fiz. 139, 129 (2004) [Theor. Math. Phys. 139, 557 (2004)].MathSciNetGoogle Scholar
  6. 6.
    E. Nelson, Dynamical Theory of Brownian Motion (Princeton. Univ., Princeton, 1967).Google Scholar
  7. 7.
    R. Feynman, R. Leiton, and M. Sands, Feynmann Lectures in Physics (Addison-Wesley, Reading, Mass, 1964; Mir, Moscow, 1966), no. 9, p. 244.Google Scholar
  8. 8.
    I. Fenyes, “Probability Theoretical Foundations and Construction of Quantum Mechanics,” in Questions of Causality in Quantum Mechanics (Inostr. Liter., Moscow, 1955), p. 244 [in Russian].Google Scholar
  9. 9.
    M. Smolukhovskii, “Some Examples of Brownian Molecular Motion under the Action of External Forces,” in: A. Einshtein and M. Smolukhovskii, The Brownian Motion (Moscow, 1936), p. 203 [in Russian].Google Scholar
  10. 10.
    N. N. Bogoliubov, “On Some Statistical Methods of Mathematical Physics,” Ch. 4, in Collection of Scientific Works, vol. 4 (Nauka, Moscow, 2006), p. 121 [in Russian].Google Scholar
  11. 11.
    H. Umezawa, Advanced Field Theory. Micro-, Macro- and Thermal Physics (AIP, New York, 1993).Google Scholar
  12. 12.
    N. N. Bogoliubov, “Microscopic Solutions of Boltzmann-Enskog Equation in Kinetic Theory for Elastic Balls,” in Collection of Scientific Works, vol. 5 (Nauka, Moscow, 2006), p. 608 [in Russian].Google Scholar
  13. 13.
    N. N. Bogoliubov, “On Some Problems, Related with Foundation of Statistic Mechanics,” in Collection of Scientific Works, vol. 6 (Nauka, Moscow, 2006), p. 432 [in Russian].Google Scholar
  14. 14.
    A. Einstein, “To General Molecular Theory of Heat,” in Collection of Scientific Works, vol. 3 (Nauka, Moscow, 1966), p. 67 [in Russian].Google Scholar
  15. 15.
    A. D. Sukhanov, Fiz. Elem. Chastits At. Yadra 36, 1281 (2005) [Phys. Part. Nucl. 36, 667 (2005)].Google Scholar
  16. 16.
    D. I. Blokhintsev, Principial Questions of Quantum Mechanics (Nauka, Moscow, 1966), p. 54 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Peoples’ Friendship University of RussiaMoscowRussia
  2. 2.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations