Advertisement

Physics of Particles and Nuclei Letters

, Volume 7, Issue 5, pp 326–333 | Cite as

Role of anomalous chromomagnetic interaction in Pomeron and Odderon structures and in gluon distribution

  • N. Kochelev
Physics of Elementary Particles and Atomic Nuclei. Theory

Abstract

We calculate the contribution arising from nonperturbative quark-gluon chromomagnetic interaction to the high-energy total quark-quark cross section and to gluon distributions in nucleon. The estimation obtained within the instanton model of QCD vacuum leads to the conclusion that this type of interaction gives the dominating contribution to the Pomeron coupling with the light quarks and to gluon distribution in light hadrons at small virtualities of quarks and gluons. We argue that the Odderon, which is the P = C = −1 partner of the Pomeron, is governed by the spin-flip component related to nonperturbative three-gluon exchange induced by anomalous quark-gluon chromomagnetic interaction.

Keywords

Nucleus Letter Light Quark Gluon Distribution Pomeron Exchange Gluon Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. V. Landshoff, “Fundamental Problems with Hadronic and Leptonic Interactions,” Acta Phys. Polon. B 40, 1967 (2009), hep-ph/0903.1523.ADSGoogle Scholar
  2. 2.
    I. P. Ivanov, N. N. Nikolaev, and A. A. Savin, “Diffractive Vector Meson Production at HERA: From Soft to Hard QCD,” Part. Nucl. 37, 1 (2006), hep-ph/0501034.CrossRefGoogle Scholar
  3. 3.
    P. V. Landshoff, “Soft and Hard QCD,” hep-ph/0209364.Google Scholar
  4. 4.
    E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, “The Pomeranchuk Singularity in Non-Abelian Gauge Theories,” Zh. Eksp. Teor. Fiz. 72, 377 (1977) [Sov. Phys. JETP 45, 199 (1977)]; I. I. Balitsky and L. N. Lipatov, “The Pomeranchuk Singularity in Quantum Chromodynamics,” Yad. Fiz. 28, 1597 (1978) [Sov. J. Nucl. Phys. 28, 822 (1978)]; L. N. Lipatov, “The Bare Pomeron in Quantum Chromodynamics,” Zh. Eksp. Teor. Fiz. 90, 1536 (1986) [Sov. Phys. JETP 63, 904 (1986)].MathSciNetGoogle Scholar
  5. 5.
    P. V. Landshoff and O. Nachtmann, “Vacuum Structure and Diffraction Scattering,” Z. Phys. C 35, 405 (1987).CrossRefADSGoogle Scholar
  6. 6.
    T. Schäfer and E. V. Shuryak, Rev. Mod. Phys. 70, 1323 (1998).CrossRefGoogle Scholar
  7. 7.
    D. Diakonov, Prog. Part. Nucl. Phys. 51, 173 (2003).CrossRefADSGoogle Scholar
  8. 8.
    N. I. Kochelev, “Instanton Contribution to Polarized and Unpolarized Gluon Distributions in Nucleon,” hep-ph/9707418.Google Scholar
  9. 9.
    E. V. Shuryak and I. Zahed, “Instanton-Induced Effects in QCD High-Energy Scattering,” Phys. Rev. D: Part. Fields 62, 085014 (2000).ADSGoogle Scholar
  10. 10.
    D. E. Kharzeev, Y. V. Kovchegov, and E. Levin, “QCD Instantons and the Soft Pomeron,” Nucl. Phys. A 690, 621 (2001).CrossRefADSGoogle Scholar
  11. 11.
    A. E. Dorokhov and I. O. Cherednikov, “Instanton Effects in Quark Form Factor and Quark-Quark Scattering at High Energy,” Ann. Phys. (N.Y.) 314, 321 (2004).MATHCrossRefADSGoogle Scholar
  12. 12.
    N. I. Kochelev, Phys. Lett. B 426, 149 (1998).CrossRefADSGoogle Scholar
  13. 13.
    I. O. Cherednikov et al., “Instanton Contribution To the Sivers Function,” Phys. Lett. B 642, 39 (2006).CrossRefADSGoogle Scholar
  14. 14.
    N. Kochelev, “Soft Contribution to Quark-Quark Scattering Induced by an Anomalous Chromomagnetic Interaction,” JETP Lett. 83, 527 (2006).CrossRefGoogle Scholar
  15. 15.
    A. E. Dorokhov, N. I. Kochelev, and S. V. Esaibegian, “Multi-Instanton Contribution To QCD Sum Rules for the Nucleon and Pion,” Yad. Fiz. 59, 2081 (1996) [Phys. At. Nucl. 59, 2006 (1996)].Google Scholar
  16. 16.
    D. Diakonov and V. Y. Petrov, “A Theory of Light Quarks in the Instanton Vacuum,” Nucl. Phys. B 272, 457 (1986).CrossRefADSGoogle Scholar
  17. 17.
    D. Ebert, R. N. Faustov, and V. O. Galkin, “Mass Spectra and Regge Trajectories of Light Mesons in the Relativistic Quark Model,” Phys. Rev. D: Part. Fields 79, 114029 (2009), hep-ph/0903.5183.ADSGoogle Scholar
  18. 18.
    A. Breakstone et al., “A Measurement of Anti-PP and PP Elastic Scattering in the Dip Region at S**(1/2) = 53 GeV,” Phys. Rev. Lett. 54, 2180 (1985).CrossRefADSGoogle Scholar
  19. 19.
    P. V. Landshoff and O. Nachtmann, “Some Remarks on the Pomeron and the Odderon in Theory and Experiment,” hep-ph/9808233.Google Scholar
  20. 20.
    C. Bourrely, J. Soffer, and E. Leader, “Polarization Phenomena in Hadronic Reactions,” Phys. Rep. 59, 95 (1980).CrossRefADSGoogle Scholar
  21. 21.
    M. S. Bhagwat and P. C. Tandy, “Analysis of Full-QCD and Quenched-QCD Lattice Propagators,” AIP Conf. Proc. 842, 225 (2006), nucl-th/0601020.CrossRefADSGoogle Scholar
  22. 22.
    A. Donnachie and P. V. Landshoff, “Total Cross Sections,” Phys. Lett. B 296, 227 (1992).CrossRefADSGoogle Scholar
  23. 23.
    N. Kochelev, to be published.Google Scholar
  24. 24.
    P. Gauron, B. Nicolescu, and E. Leader, Nucl. Phys. B 299, 640 (1988).CrossRefADSGoogle Scholar
  25. 25.
    A. Donnachie and P. V. Landshoff, “The Coupling of the Odderon,” Nucl. Phys. B 348, 297 (1991).CrossRefADSGoogle Scholar
  26. 26.
    J. Bartels, L. N. Lipatov, and G. P. Vacca, “A New Odderon Solution in Perturbative QCD,” Phys. Lett. B 477, 178 (2000).CrossRefADSGoogle Scholar
  27. 27.
    C. Ewerz, “The Odderon in Quantum Chromodynamics,” hep-ph/0306137.Google Scholar
  28. 28.
    M. A. Braun, “Odderon with a Running Coupling Constant,” Eur. Phys. J. C 53, 59 (2008).CrossRefADSGoogle Scholar
  29. 29.
    B. G. Zakharov, Yad. Fiz. 49, 1386 (1989) [Sov. J. Nucl. Phys. 49, 860 (1989)].Google Scholar
  30. 30.
    B. Z. Kopeliovich and B. G. Zakharov, “Spin-Flip Component of the Pomeron,” Phys. Lett. B 226, 156 (1989).CrossRefADSGoogle Scholar
  31. 31.
    S. V. Goloskokov, S. P. Kuleshov, and O. V. Selyugin, Z. Phys. C 50, 455 (1991); S. V. Goloskokov, Phys. Lett. B 315, 459 (1993); S. V. Goloskokov and P. Kroll, Phys. Rev. D: Part. Fields 60, 014019 (1999).CrossRefGoogle Scholar
  32. 32.
    Y. L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e e Annihilation by Perturbation Theory in Quantum Chromodynamics // Zh. Eksp. Teor. Fiz. 73, 1216 (1977) [Sov. Phys. JETP 46, 641 (1977)]; V. N. Gribov and L. N. Lipatov, “Deep Inelastic ep Scattering in Perturbation Theory,” Yad. Fiz. 15, 781 (1972) [Sov. J. Nucl. Phys. 15, 438 (1972)].Google Scholar
  33. 33.
    G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977).CrossRefADSGoogle Scholar
  34. 34.
    M. A. Kimber, A. D. Martin, and M. G. Ryskin, “Unintegrated Parton Distributions,” Phys. Rev. D: Part. Fields 63, 114027 (2001).ADSGoogle Scholar
  35. 35.
    I. P. Ivanov and N. N. Nikolaev, Phys. Rev. D: Part. Fields 65, 054004 (2002).ADSGoogle Scholar
  36. 36.

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations