Advertisement

Physics of Particles and Nuclei Letters

, Volume 7, Issue 2, pp 67–71 | Cite as

The two-photon exchange amplitude in ep and eμ elastic scattering: A comparison

  • E. A. Kuraev
  • E. Tomasi-Gustafsson
Physics of Elementary Particles and Atomic Nuclei. Theory

Abstract

In this note we give arguments in favor of the statement that the contribution of the box diagram calculated for electron-muon elastic scattering can be considered an upper limit to electron-proton scattering. As an exact QED calculation can be performed, this statement is useful for constraining model calculations involving the proton structure.

Keywords

Form Factor Elastic Scattering Nucleus Letter Spin Asymmetry Single Spin Asymmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. De Rujula, J. M. Kaplan, and E. De Rafael, “Elastic Scattering of Electrons from Polarized Protons and Inelastic Electron Scattering Experiments,” Nucl. Phys. B 35, 365 (1971); Nucl. Phys. B 53, 545 (1973).CrossRefADSGoogle Scholar
  2. 2.
    M. K. Jones et al., Phys. Rev. Lett. 84, 1398 (2000); O. Gayou et al., Phys. Rev. Lett. 88, 092301 (2002); V. Punjabi et al., “Proton Elastic Form Factor Ratios to Q 2 = 3.5 GeV2 by Polarization Transfer,” Phys. Rev. C 71, 055202 (2005); Phys. Rev. C 71, 069902(E) (2005).CrossRefADSGoogle Scholar
  3. 3.
    E. Tomasi-Gustafsson and G. I. Gakh, “Search for Evidence of Two-Photon Contribution in Elastic Electron-Proton Data,” Phys. Rev. C 72, 015209 (2006).CrossRefADSGoogle Scholar
  4. 4.
    S. P. Wells et al. (SAMPLE Collab.), Phys. Rev. C 63, 064001 (2001); F. E. Maas et al., “Measurement of the Transverse Beam Spin Asymmetry in Elastic Electron-Proton Scattering and the Inelastic Contribution to the Imaginary Part of the Two-Photon Exchange Amplitude,” Phys. Rev. Lett. 94, 082001 (2005).ADSGoogle Scholar
  5. 5.
    A. V. Afanasev and N. P. Merenkov, “Large Logarithms in the Beam Normal Spin Asymmetry of Elastic Electron-Proton Scattering,” Phys. Rev. D: Part. Fields 70, 073002 (2004); M. Gorchtein, “Doubly Virtual Compton Scattering and the Beam Normal Spin Asymmetry,” Phys. Rev. C 73, 035213 (2006); D. Borisyuk and A. Kobushkin, “Beam Normal Spin Asymmetry of Elastic eN Scattering in the Leading Logarithm Approximation, Phys. Rev. C 73, 045210 (2006); B. Pasquini and M. Vanderhaeghen, “Resonance Estimates for Single Spin Asymmetries in Elastic Electron-Nucleon Scattering,” Phys. Rev. C 70, 045206 (2004).ADSGoogle Scholar
  6. 6.
    E. Kuraev et al., “Double Logarithmical Corrections to Beam Asymmetry in Polarized Electron-Proton Scattering,” Phys. Lett. B 655, 196 (2007).CrossRefADSGoogle Scholar
  7. 7.
    T. Kinoshita, J. Math. Phys. 3, 650 (1962); T. D. Lee and M. Nauenberg, Phys. Rev. B 133, 1549 (1964).MATHCrossRefADSGoogle Scholar
  8. 8.
    M. P. Rekalo, E. Tomasi-Gustafsson, and D. Prout, Phys. Rev. C 60, 042202(R) (1999).CrossRefADSGoogle Scholar
  9. 9.
    M. P. Rekalo and E. Tomasi-Gustafsson, “Model Independent Properties of Two-Photon Exchange in Elastic Electron-Proton Scattering,” Eur. Phys. J. A 22, 331 (2004); M. P. Rekalo and E. Tomasi-Gustafsson, “The Complete Experiment for e±N Elastic Scattering in Presence of Two-Photon Exchange,” Nucl. Phys. A 740, 271 (2004); M. P. Rekalo and E. Tomasi-Gustafsson, “Polarization Phenomena in Elastic e ± N Scattering, for Axial Parametrization of Two-Photon Exchange,” Nucl. Phys. A 742, 322 (2006).CrossRefADSGoogle Scholar
  10. 10.
    E. A. Kuraev et al., “Target Normal Spin Asymmetry and Charge Asymmetry for ep Elastic Scattering and the Crossed Processes,” Phys. Rev. D: Part. Fields 74, 013003 (2006).ADSGoogle Scholar
  11. 11.
    N. M. Kroll, Nuovo Cim. A 45, 65 (1966).CrossRefADSGoogle Scholar
  12. 12.
    V. N. Baier et al., “Inelastic Processes in Quantum Electrodynamics at High Energies,” Phys. Rep. 78, 293 (1981).CrossRefADSGoogle Scholar
  13. 13.
    E. A. Kuraev, M. Secansky, and E. Tomasi-Gustafsson, “High-Energy Inelastic Eleclron-Hadron Scattering, in Peripheral Kinematics: Sum Rules for Hadron Form Factors,” Phys. Rev. D: Part. Fields 73, 125016 (2006) and refs. therein; E. A. Kuraev et al., “Charge Asymmetry for Electron (Positron)-Proton Elastic Scattering at Large Angle,” Phys. Rev. C 78, 015205 (2008).ADSGoogle Scholar
  14. 14.
    P. Van Nieuwenhuizen, Nucl. Phys. B 28, 429 (1971).CrossRefADSGoogle Scholar
  15. 15.
    P. G. Blunden, W. Melnilchouk, and J. A. Tjon, “Two-Photon Exchange and Elastic Electron-Proton Scattering,” Phys. Rev. Lett. 91, 142304 (2003); Y.-C. Chen et al., Phys. Rev. Lett. 93, 122301 (2004); P. A.M.Guichon and M. Vanderhaeghen, “How to Reconcile the Rosenbluth and the Polarization Transfer Method in the Measurement of the Proton Form Factors,” Phys. Rev. Lett. 91, 142303 (2003); D. Borisyuk and A. Kobushkin, “Box Diagram in the Elastic Electron-Proton Scattering,” Phys. Rev. C 74, 065203 (2006).CrossRefADSGoogle Scholar
  16. 16.
    V. A. Matveev, R. M. Muradian, and A. N. Tavkhelidze, “Automodellism in the Large-Angle Elastic Scattering and Structure of Hadrans,” Lett. Nuovo Cim. 7, 719 (1973); S. J. Brodsky and G. R. Farrar, “Scaling Laws at Large Transverse Momentum,” Phys. Rev. Lett. 31, 1153 (1973).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Dubna bDSM, IRFU, SPhN, SaclayGif-sur-YvetteFrance

Personalised recommendations