Individual events and mathematical formalism of quantum mechanics



We describe a scheme for constructing quantum mechanics in which the Hilbert space and linear operators are only secondary structures of the theory, while the primary structures are the elements of a non-commutative algebra (observables) and the functionals on this algebra, associated with the results of a single observation.

PACS number

03.67.Hk 01.30.Cc 03.67.-a 


  1. 1.
    J. von Neumann, Mathematic Foundations of Quantum Mechanics (Springer, Berlin, 1932).Google Scholar
  2. 2.
    D. A. Slavnov, Phys. Part. Nucl. 38, 147 (2007).CrossRefGoogle Scholar
  3. 3.
    J. S. Dixmier, C*-Algebra at Leurs Representation (Gauthier-Villars, Paris, 1969).Google Scholar
  4. 4.
    A. N. Kolmogorov, Foundations of the Theory of Probability, 2nd ed. (Chelsea, New York, 1956; 2nd ed., Nauka, Moscow, 1974).MATHGoogle Scholar
  5. 5.
    J. Neveu, Mathematic Bases of Probability Calculation (Masson, Paris, 1964).Google Scholar
  6. 6.
    P. Jordan, Z. Phys. 80, 285 (1933).MATHCrossRefADSGoogle Scholar
  7. 7.
    G. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Wiley, New York, 1972; Mir, Moscow, 1976).MATHGoogle Scholar
  8. 8.
    M. A. Neimark, Normed Algebras (Wolters-Noordhoff, Groningen, 1970).Google Scholar
  9. 9.
    M. Born, Z. Phys. 37, 863 (1926); Z. Phys. 38, 803 (1926); Z. Phys. 40, 167 (1927).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Department of PhysicsMoscow State University GSP-2MoscowRussia

Personalised recommendations