Physics of Particles and Nuclei Letters

, Volume 6, Issue 2, pp 97–105 | Cite as

Bose-Einstein correlations of light hadrons and the stochastic scale of particle emitter source

  • G. A. Kozlov
Physics of Elementary Particles and Atomic Nuclei. Theory

Abstract

Based on quantum field theory at finite temperature, we obtained new results for two-particle Bose-Einstein correlation (BEC) function C 2(Q) in case of light hadrons. The important parameters of BEC function related to the size of emitting source, mean multiplicity, stochastic forces range and correlation radius with the particle energy and the mass dependence, and the temperature of the source are obtained in analytical form for the first time. Not only is the correlation between identical bosons explored but also the off-correlation between non-identical particles is proposed.

PACS numbers

11.10 Wx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Weiner, Phys. Rep. 327, 249 (2000).CrossRefADSGoogle Scholar
  2. 2.
    R. Hanbury-Brown and R. Q. Twiss, Nature 178, 1046 (1956).CrossRefADSGoogle Scholar
  3. 3.
    G. A. Kozlov, O. V. Utyuzh, and G. Wilk, Phys. Rev. C 68, 024901 (2003).Google Scholar
  4. 4.
    G. A. Kozlov, Phys. Rev. C 58, 1188 (1998).CrossRefGoogle Scholar
  5. 5.
    G. A. Kozlov, J. Math. Phys. 42, 4749 (2001).MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    G. A. Kozlov, New J. Phys 4, 23 (2002).CrossRefADSGoogle Scholar
  7. 7.
    G. A. Kozlov, Part. Nucl. 36, 108 (2005).Google Scholar
  8. 8.
    G. A. Kozlov et al., hep-ph/0510027.Google Scholar
  9. 9.
    G. A. Kozlov et al., Phys. Atom. Nucl. 71, 1502–1504 (2008); hep-ph/0710.3710.CrossRefADSGoogle Scholar
  10. 10.
    G. A. Kozlov, hep-ph/0512184.Google Scholar
  11. 11.
    P. Langevin, Acad. Sci. 146, 530 (1908).MATHGoogle Scholar
  12. 12.
    ALEPH Collab., Eur. Phys. J. C 36, 147 (2004); Phys. Lett. B 611, 66 (2005).CrossRefADSGoogle Scholar
  13. 13.
    DELPHI Collab., Phys. Lett. B 379, 330 (1996).CrossRefGoogle Scholar
  14. 14.
    G. Abbiendi et al. (OPAL Collab.), Phys. Lett. B 559, 131 (2003).CrossRefADSGoogle Scholar
  15. 15.
    ZEUS Collab., Phys. Lett. B 583, 231 (2004).CrossRefGoogle Scholar
  16. 16.
    T. Alexopoulos et al. (E735 Collab.), Phys. Rev. D 48, 1931 (1993).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    I. Andreev, M. Plumer, and R. Weiner, Phys. Rev. Lett. 67, 3475 (1991).CrossRefADSGoogle Scholar
  18. 18.
    G. Goldhaber et al., Phys. Rev. Lett. 3, 181 (1959).CrossRefADSGoogle Scholar
  19. 19.
    G. Goldhaber et al., Phys. Rev. 120, 300 (1960).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    N. N. Bogolyubov, JINR D-781 (Dubna, 1961).Google Scholar
  21. 21.
    N. N. Bogolyubov and D. V. Shirkov, An Introduction to the Theory of Quantized Fields (Wiley, Intersci., New York, 1959).Google Scholar
  22. 22.
    V. Bernard, N. Kaiser, and U.-G. Meissner, Phys. Rev. C 62, 028201 (2000).Google Scholar
  23. 23.
    C. Y. Wong and W. N. Zhang, Phys. Rev. C 76, 034905 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • G. A. Kozlov
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations