Physics of Particles and Nuclei Letters

, Volume 5, Issue 3, pp 324–327 | Cite as

Data smoothing by splines with free knots

  • N. D. Dikoussar
  • Cs. Török
Article

Abstract

A smoother based on an adaptive cubic model [1, 2] and splines with free knots is proposed. The model uses three reference data points and two parameters of control for estimation of a near optimal position of knots at the axis x in autotracking mode. The data points are prethinned and corrected by local linear fitting. The coefficient table is obtained by standard spline procedure. The efficiency and the stability of the smoother w.r.t. random errors are shown on real noisy data.

PACS numbers

02.30.-f 02.60.-x 02.60.Gf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. D. Dikoussar, “Local Cubic Approximation and Smoothing of Curves in Adaptation Mode,” JINR Commun. P10-99-168 (Dubna, 1999); N. D. Dikoussar, “A Local Cubic Smoothing in an Adaptation Mode,” JINR Preprint E10-2001-48 (Dubna, 2001).Google Scholar
  2. 2.
    N. D. Dikoussar and Cs. Török, “Automatic Knot Finding for Piecewise-Cubic Approximation,” Mathem. Model. 18(3), 23–40 (2006).MATHGoogle Scholar
  3. 3.
    W. Härdle, Applied Nonparametric Regression (Cambridge Univ., Cambridge, 1990).MATHGoogle Scholar
  4. 4.
    J. Friedman, A Variable Span Smoother, SLAC PUB-3477 (Stanford, 1984).Google Scholar
  5. 5.
    B. W. Silverman, “A Fast and Efficient Cross-Validation Method for Smoothing Parameter Choice in Spline Regression,” J. Amer. Statist. Assn. 19 (1984).Google Scholar
  6. 6.
    N. D. Dikoussar, “Discrete Projective Transformations on the Coordinate Plane,” Mathem. Model. 1(3), 50–64 (1991).Google Scholar
  7. 7.
    N. D. Dikoussar, “Adaptive Projective Filters for Track Finding,” Comp. Phys. Commun. 79, 39–51 (1994).CrossRefADSGoogle Scholar
  8. 8.
    N. D. Dikoussar, “Function Parametrization by Using 4-Point Transforms,” Comp. Phys. Commun. 99, 235–254 (1997).CrossRefADSMATHGoogle Scholar
  9. 9.
    Cs. Török and N. D. Dikoussar, “MS.NET Components for Piecewise-Cubic Approximation,” JINR Commun. P10-2004-202 (Dubna, 2004).Google Scholar
  10. 10.
    M. Révayová and Cs. Török, “Piecewise Approximation and Neural Networks,” Kibernetika 43(4), (2007).Google Scholar
  11. 11.
    The European Phys. J. C. Review of Particle Physics (Springer, 2000), p. 235.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • N. D. Dikoussar
    • 1
  • Cs. Török
    • 2
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Technical UniversityKošiceSlovak Republic

Personalised recommendations