Advertisement

Physics of Particles and Nuclei Letters

, Volume 4, Issue 4, pp 304–308 | Cite as

Charge radii of high-spin isomers measured using laser spectroscopy methods

  • Yu. P. Gangrsky
Physics of Elementary Particles and Atomic Nuclei. Experiment
  • 20 Downloads

Abstract

The overview of experimental data on charge radii differences between the ground and the high-spin isomeric states is presented. Methods of high-resolution laser spectroscopy were used for measurements. Charge radii differences obtained in two ways are compared: from measurements of isomeric shifts of atomic levels of nuclei under study and from measurements of quadrupole moments in both states under the assumption that the radii differences are determined by the difference of their quadrupole deformations. Isomers formed at a rupture of one or several nucleon pairs and isomers with the configuration of the odd neutron 1h 11/2 for the nuclear region Cd-Ba and 1i 13/2 for the region Hg-Pb are considered. Observed deviations of the above charge radii differences for isomeric states of a different nature are discussed.

PACS numbers

42.62.Fi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. W. Otten, Treatise on Heavy Ion Sci. 8, 664 (1989).Google Scholar
  2. 2.
    F. Aufmuth, K. Heulig, and A. Steudel, ADNDT 37, 455 (1987).CrossRefADSGoogle Scholar
  3. 3.
    E. G. Nadjakov, K. P. Marinova, and Yu. P. Gangrsky, ADNDT 56, 133 (1994).CrossRefADSGoogle Scholar
  4. 4.
    K. P. Marinova, Fiz. Elem. Chastits At. Yadra 35, 693 (2004) [Phys. Part. Nucl. 35, 693 (2004)].Google Scholar
  5. 5.
    V. G. Solovjev, The Theory of Atomic Nucleus (Energoizdat, Moscow, 1981) [in Russian].Google Scholar
  6. 6.
    G. Shimkaveg et al., Phys. Rev. Lett. 53, 2230 (1984).CrossRefADSGoogle Scholar
  7. 7.
    J. Bonn et al., Z. Phys. A 276, 203 (1976).CrossRefGoogle Scholar
  8. 8.
    P. Dabkievich et al., Phys. Lett. B 82, 199 (1979).CrossRefADSGoogle Scholar
  9. 9.
    H. Backe et al., Phys. Rev. Lett. 80, 920 (1998).CrossRefADSGoogle Scholar
  10. 10.
    E. Browne and R. B. Firenstone, Table of Radioactive Isotopes, Ed. by V. Shirley (Wiley, New York, 1986).Google Scholar
  11. 11.
    N. J. Stone, ADNDT 90, 75 (2005).CrossRefADSGoogle Scholar
  12. 12.
    S. Raman, C. W. Nestor, and P. Tikkaneen, ADNDT 78, 1 (2001).CrossRefADSGoogle Scholar
  13. 13.
    I. D. Moore et al., J. Phys. G 31, S1499 (2005).CrossRefGoogle Scholar
  14. 14.
    N. Boos et al., Phys. Rev. Lett. 72, 2689 (1994).CrossRefADSGoogle Scholar
  15. 15.
    R. C. Thompson et al., J. Phys. G 9, 443 (1983).CrossRefADSGoogle Scholar
  16. 16.
    C. Thibault et al., Nucl. Phys. A 367, 1 (1981).CrossRefADSGoogle Scholar
  17. 17.
    U. Georg et al., Eur. Phys. J. A 3, 225 (1998).CrossRefADSGoogle Scholar
  18. 18.
    M. Anselment et al., Phys. Rev. C 34, 1052 (1986).CrossRefADSGoogle Scholar
  19. 19.
    K. Beck et al., Z. Phys. A 291, 219 (1979).CrossRefGoogle Scholar
  20. 20.
    W. D. Magers and K. H. Schmidt, Nucl. Phys. A 419, 61 (1983).ADSGoogle Scholar
  21. 21.
    J. Eberz et al., Nucl. Phys. A 454, 9 (1987).CrossRefADSGoogle Scholar
  22. 22.
    E. F. Moore et al., Phys. Rev. Lett. 64, 3167 (1990).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • Yu. P. Gangrsky
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations