Physics of Particles and Nuclei Letters

, Volume 4, Issue 3, pp 223–231 | Cite as

Parametrization of a nonlocal chiral quark model in the instantaneous three-flavor case. Basic formulas and tables

  • H. Grigorian
Physics of Elementary Particles and Nuclei. Theory

Abstract

We describe the basic formulation of the parametrization scheme for the instantaneous nonlocal chiral quark model in the three-flavor case. We choose to discuss the Gaussian, Lorentzian-type, Woods-Saxon, and sharp cutoff (NJL) functional forms of the momentum dependence for the form factor of the separable interaction. The four parameters, light and strange quark masses and coupling strength (G S) and range of the interaction (Λ), have been fixed by the same phenomenological inputs: pion and kaon masses and the pion decay constant and light quark mass in vacuum. The Woods-Saxon and Lorentzian-type form factors are suitable for an interpolation between sharp cutoff and soft momentum dependence. Results are tabulated for applications in models of hadron structure and quark matter at finite temperatures and chemical potentials, where separable models have been proven successfully.

PACS numbers

04.40.Dg 12.38.Mh 26.60.+c 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Karsch, AIP Conf. Proc. 842, 20 (2006); heplat/0601013.CrossRefADSGoogle Scholar
  2. 2.
    B. Muller and J. L. Nagle, nucl-th/0602029.Google Scholar
  3. 3.
    P. Senger, Acta Phys. Pol. B 37, 115 (2006).ADSGoogle Scholar
  4. 4.
    T. Klahn et al., Phys. Rev. C 74, 035802 (2006).Google Scholar
  5. 5.
    M. Buballa, Phys. Rep. 407, 205 (2005).CrossRefADSGoogle Scholar
  6. 6.
    S. B. Ruster et al., Phys. Rev. D: Part. Fields 72, 034004 (2005).Google Scholar
  7. 7.
    D. Blaschke et al., Phys. Part. D: Part. Fields 72, 065020 (2005).Google Scholar
  8. 8.
    D. N. Aguilera, D. Blaschke, and H. Grigorian, Nucl. Phys. A 757, 527 (2005).CrossRefADSGoogle Scholar
  9. 9.
    H. Abuki and T. Kunihiro, Nucl. Phys. A 768, 118 (2006).CrossRefADSGoogle Scholar
  10. 10.
    S. M. Schmidt, D. Blaschke, and Yu. L. Kalinovsky, Phys. Rev. C 50, 435 (1994).CrossRefADSGoogle Scholar
  11. 11.
    D. Blaschke et al., Intern. J. Mod. Phys. A 16, 2267 (2001).MATHCrossRefADSGoogle Scholar
  12. 12.
    D. Dumm Gomez et al., Phys. Rev. D 73, 114019 (2006).Google Scholar
  13. 13.
    D. Blaschke et al., Nucl. Phys. A 736, 203 (2004).CrossRefADSGoogle Scholar
  14. 14.
    H. Grigorian, D. Blaschke, and D. N. Aguilera, Phys. Rev. C 69, 065802 (2004).Google Scholar
  15. 15.
    H. Grigorian, D. Blaschke, and D. Voskresensky, Phys. Rev. C 71, 045801 (2005).Google Scholar
  16. 16.
    S. Popov, H. Grigorian, and D. Blaschke, Phys. Rev. C 74, 025803 (2006).Google Scholar
  17. 17.
    D. N. Aguilera et al., Phys. Rev. D: Part. Fields 72, 034008 (2005).Google Scholar
  18. 18.
    D. N. Aguilera and D. B. Blaschke, Pisma EChAYa 4(3[139]) 351 (2007) [Phys. Part. Nucl. Lett. 4 (3), 205 (2007)]; hep-ph/0512001.Google Scholar
  19. 19.
    C. Gocke et al., hep-ph/0104183.Google Scholar
  20. 20.
    D. Blaschke et al., Nucl. Phys. A 586, 711 (1995).CrossRefADSGoogle Scholar
  21. 21.
    H. G. Dosch and S. Narison, Phys. Lett. B 417, 173 (1998).CrossRefADSGoogle Scholar
  22. 22.
    P. Rehberg, S. P. Klevansky, and J. Hufner, Phys. Rev. C 53, 410 (1996).CrossRefADSGoogle Scholar
  23. 23.
    P. Costa et al., Phys. Rev. D: Part. Fields 71, 116002 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • H. Grigorian
    • 1
  1. 1.Institüt für PhysikUniversität RostockRostockGermany

Personalised recommendations