Physics of Particles and Nuclei Letters

, Volume 4, Issue 2, pp 119–121 | Cite as

Entangled solitons and stochastic q-bits

  • Yu. P. Rybakov
  • T. F. Kamalov
Article
  • 24 Downloads

Abstract

Stochastic realization of the wave function in quantum mechanics with the inclusion of soliton representation of extended particles is discussed. Two-soliton configurations are used for constructing entangled states in generalized quantum mechanics dealing with extended particles, endowed with nontrivial spin S. Entangled solitons construction being introduced in the nonlinear spinor field model, the Einstein-Podolsky-Rosen (EPR) correlation is calculated and shown to coincide with the quantum mechanical one for the 1/2-spin particles. The concept of stochastic qubits is used for quantum computing modeling.

PACS numbers

03.67.Lx 03.67.Hk 02.50.Fz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. de Broglie, Uncertainty of Heisenberg and Probabilistic Interpretation of Wave Mechanics (Gauthier-Villars, Paris, 1982; Mir, Moscow, 1986).Google Scholar
  2. 2.
    A. Einstein, Collected Papers (Nauka, Moscow, 1967).Google Scholar
  3. 3.
    Yu. P. Rybakov, “The Bohm-Vigier Subquantum Fluctuations and Nonlinear Field Theory,” Intern. J. Theor. Phys 5(2), 131–138 (1972).CrossRefGoogle Scholar
  4. 4.
    Yu. P. Rybakov, “On the Causal Interpretation of Quantum Mechanics,” Found. Phys. 4(2), 149–161 (1974).CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Yu. P. Rybakov, “Statistic Theory of Fields and Quantum Mechanics,” Ann. Fond L. de Broglie 2(3), 181–203 (1977).MathSciNetGoogle Scholar
  6. 6.
    Yu. P. Rybakov, “Self-Gravitating Solitons and Nonlinear-Resonance Quantization Mechanism,” Bull. of Peoples’ Friendship Univ. of Russia. Ser. Phys. 3(1), 130–137 (1995).Google Scholar
  7. 7.
    Yu. P. Rybakov and B. Saha, “Soliton Model of Atom,” Found. Phys 25(12), 1723–1731 (1995).CrossRefADSGoogle Scholar
  8. 8.
    Yu. P. Rybakov and B. Saha, “Interaction of a Charged 3D Soliton with a Coulomb Center,” Phys. Lett. A 222(1), 5–13 (1996).MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Yu. P. Rybakov and M. Shachir, “On Fresnel Diffraction of Solitons in the Synge Model,” Izv. Vuzov. Ser. Phys. 25(1), 36–38 (1982).Google Scholar
  10. 10.
    Yu. P. Rybakov and T. F. Kamalov, “Stochastic Gravitational Fields and Quantum Correlations,” Bull. of Peoples’ Friendship Univ. of Russia. Ser. Phys. 10(1), 5–7 (2002).Google Scholar
  11. 11.
    Yu. P. Rybakov and S. A. Terletsky, “Dynamics of Solitons in External Fields and Quantum Mechanics,” Bull. of Peoples’ Friendship Univ. of Russia. Ser. Phys. 12, 88–112 (2004).Google Scholar
  12. 12.
    N. V. Evdokimov et al., “Bell’s Inequalities and EPR-Bohm Correlations: Working Classical Radiofrequency Model,” Uspekhi Fizicheskikh Nauk 166(1), 91–107 (1996) [Physics-Uspekhi 39 (1), 83–98 (1996)].CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • Yu. P. Rybakov
    • 1
  • T. F. Kamalov
    • 2
  1. 1.Department of Theoretical PhysicsPeoples’ Friendship University of RussiaMoscowRussia
  2. 2.Physics DepartmentMoscow State Open UniversityMoscowRussia

Personalised recommendations