Physics of Particles and Nuclei Letters

, Volume 4, Issue 1, pp 29–38 | Cite as

Analysis of angular momentum dependence of fission fragment mass-energy distribution within Langevin dynamics

  • E. G. Ryabov
  • A. V. Karpov
  • G. D. Adeev
Physics of Elementary Particles and Atomic Nucleus. Theory


Dependence of fission fragment mass-energy distribution on the angular momentum is studied within Langevin dynamics. The calculations are performed in the framework of the generalized temperature-dependent finite-range liquid drop model. The analysis is done for five compound nuclear systems representing heavy fissioning nuclei, medium fissioning nuclei, and a light fissioning one with the angular momentum varied in a wide range from l = 0 to 70ħ. The coefficients dE K 〉/dl 2 and \(d\sigma _{{\rm E}_{\rm K} }^2 /dl^2 \) are extracted. Previous analysis of the dσ M 2 /dl 2 coefficient is generalized. Excitation energy dependence of the fission fragment mass-energy distribution is also found. The qualitative comparison of the extracted values with the experimental data reveals good agreement for all the cases. The calculated values of the coefficients dσ M 2 /dl 2 and \(d\sigma _{{\rm E}_{\rm K} }^2 /dl^2 \) are functions of the angular momentum, in contrast to the experimental estimations.

PACS numbers

24.75.+i 05.10.Gg 21.10.Ma 21.10.Gv 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bohr and B. Mottelson, Nuclear Structure (Benjamin/Cummings, New York, 1969, 1974; Mir, Moscow, 1977).Google Scholar
  2. 2.
    V. M. Kolomietz and S. Shlomo, “Nuclear Fermi-Liquid Drop Model,” Phys. Rep. 390, 133–233 (2004).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    M. G. Itkis et al., “Symmetric and Asymmetric Fission of Nuclei which Are More Light Then Thorium,” Fiz. Elem. Chastits At. Yadra 19(4), 701–784 (1988) [Phys. Part. Nucl. 19, 301–337 (1988)].Google Scholar
  4. 4.
    J. R. Nix and W. J. Swiatecki, “Studies in the Liquid-Drop Theory of Nuclear Fission,” Nucl. Phys. A 71, 1–94 (1965).CrossRefGoogle Scholar
  5. 5.
    J. R. Nix, “Further Studies in the Liquid-Drop Theory of Nuclear Fission,” Nucl. Phys. A 130, 241–292 (1969).CrossRefADSGoogle Scholar
  6. 6.
    G. G. Chubaryan et al., “Mass-Energetic Distribution of Fragments and Angular Moment at Exited Nuclei Fission,” Yad. Fiz. 56(3), 3–29 (1993) [Phys. At. Nucl. 56, 286–302 (1993)].Google Scholar
  7. 7.
    M. G. Itkis et al., “Fission of Exited Nuclei with Z 2/A = 20–33: Mass-Energetic Distribution of Fragments, Angular Moment and Tiny Model,” Yad. Fiz. 58, 2140–2165 (1995) [Phys. At. Nucl. 58, 2026–2051 (1995)].Google Scholar
  8. 8.
    M. G. Itkis and A. Ya. Rusanov, “Heated Nuclei Fission in Reactions with Heavy Ions: Static and Dynamic Aspects,” Fiz. Elem. Chastits At. Yadra 29(2), 389–488 (1998) [Phys. Part. Nucl. 29, 160–201 (1998)].Google Scholar
  9. 9.
    C. Gregoire and F. Scheuter, “Mass Distribution of Heavy Ion Fission within a Dynamical Treatment,” Z. Physik. A 303, 337–338 (1981).CrossRefGoogle Scholar
  10. 10.
    M. E. Faber, “The Mass Distribution Width of Heavy-Ion Fission for Various Composite Systems,” Z. Physik. 297, 277–278 (1980); M. E. Faber, “Influence of Angular Momentum on Mass Distribution of Heavy-Ion-Induced Fission,” Phys. Rev. 24, 1047–1054 (1981).CrossRefGoogle Scholar
  11. 11.
    B. G. Glagola, B. B. Back, and R. R. Betts, “Effects of Large Angular Momenta on the Fission Properties of Pt Isotopes,” Phys. Rev. 29, 486–497 (1984).ADSGoogle Scholar
  12. 12.
    G. D. Adeev et al., “Diffuzion Model of Fission Fragments Distributions Forming,” Fiz. Elem. Chastits At. Yadra 19(6), 1229–1298 (1988) [Phys. Part. Nucl. 19, 529–559 (1988)].Google Scholar
  13. 13.
    Y. Abe et al., “On Stochastic Approaches of Nuclear Dynamics,” Phys. Rep. 275, 49–196 (1996).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    G. D. Adeev et al., “Multidimensional Stochastic Approach to the Fission Dynamics of Exited Nuclei,” Fiz. Elem. Chastits At. Yadra 36(4), 732–820 (2005) [Phys. Part. Nucl. 36 (4), 378–426 (2005)].Google Scholar
  15. 15.
    A. V. Karpov et al., “Three-Dimensional Langevin Calculations of Fission Fragment Mass-Energy Distribution from Excited Compound Nuclei,” Phys. Rev. C 63, 054610 (2001).Google Scholar
  16. 16.
    P. N. Nadtochy, G. D. Adeev, and A. V. Karpov, “More Detailed Study of Fission Dynamics in Fusion-Fission Reactions within a Stochastic Approach,” Phys. Rev. C 65, 064615 (2002).Google Scholar
  17. 17.
    N. D. Mavlitov, P. Frobrich, and I. I. Gontchar, “Combining a Langevin Description of Heavy-Ion Induced Fission Including Neutron Evaporation with the Statistical Model,” Z. Physik. A 342, 195–198 (1992).CrossRefGoogle Scholar
  18. 18.
    P. Frobrich and I. I. Gontchar, “What Are Sensitive Probes for Nuclear Friction in Heavy-Ion Induced Fission?,” Nucl. Phys. A 563, 326–348 (1993).CrossRefADSGoogle Scholar
  19. 19.
    E. G. Ryabov, A. V. Karpov, and G. D. Adeev, “Influence of Angular Momentum on Fission Fragment Mass Distribution: Interpretation within Langevin Dynamics,” Nucl. Phys. A 765, 39–60 (2006).CrossRefADSGoogle Scholar
  20. 20.
    A. V. Karpov et al., “Consistent Application of the Finite-Range Liquid-Drop Model to Langevin Fission Dynamics of Hot Rotating Nuclei,” J. Phys. G. Nucl. Part. Phys. 29, 2365–2380 (2003).CrossRefADSGoogle Scholar
  21. 21.
    E. G. Ryabov and G. D. Adeev, “Static and Statistical Properties of Hot Rotating Nuclei in a Macroscopic Temperature-Dependent Finite-Range Model,” Yad. Fiz. 68, 1583–1598 (2005) [Phys. Atom. Nucl. 68 (9), 1525–1539 (2005)].Google Scholar
  22. 22.
    M. Brack et al., “Funny Hills: The Shell Correction Approach to Nuclear Shell Effects and Its Applications To the Fission Process,” Rev. Mod. Phys. 44(2), 320–405 (1972).CrossRefADSGoogle Scholar
  23. 23.
    P. Frobrich and I. I. Gontchar, “Langevin Description of Fusion, Deep-Inelastic Collisions and Heavy-Ion Induced Fission,” Phys. Rep. 292, 131–237 (1998).CrossRefADSGoogle Scholar
  24. 24.
    J. R. Nix and A. J. Sierk, in Proc. of the Intern. School-Seminar on Heavy Ion Physics, Dubna, 1986 (Dubna, 1987), p. 453; Nix J. R. “Summary: Our 5-Year Odyssey with Fission,” Nucl. Phys. A 502, 609–630 (1989).Google Scholar
  25. 25.
    J. R. Nix and A. J. Sierk, in Proc. of the Sixth Adriatic Conf. on Nuclear Physics: Frontiers of Heavy Ion Physics, Dubrovnik, Yugoslavia, 1987 (Singapore, 1990), p. 333.Google Scholar
  26. 26.
    K. T. R. Davies, A. J. Sierk, and J. R. Nix, “Effect of Viscosity on the Dynamics of Fission,” Phys. Rev. C 13, 2385–2403 (1976); J. R. Nix and A. J. Sierk, “Dynamics of Fission and Heavy Ion Reactions,” Nucl. Phys. A 428, 161–175 (1984).CrossRefADSGoogle Scholar
  27. 27.
    P. N. Nadtochy and G. D. Adeev, “Dynamical Interpretation of Average Fission-Fragment Kinetic Energy Systematics and Nuclear Scission,” Phys. Rev. C 72, 054608 (2005).Google Scholar
  28. 28.
    V. E. Viola, K. Kwiatkowsky, and M. Walker, “Systematics of Fission Fragment Total Kinetic Energy Release,” Phys. Rev. C 31, 1550–1552 (1985).CrossRefADSGoogle Scholar
  29. 29.
    K. T. R. Davies, et al., “Rupture of the Neck in Nuclear Fission,” Phys. Rev. C 16, 1890–1901 (1977).CrossRefADSGoogle Scholar
  30. 30.
    V. M. Strutinsky, N. Y. Lyashenko, and N. A. Popov, “Symmetrical Shapes of Equilibrium for a Liquid Drop Model,” Nucl. Phys. A 46, 639–659 (1963).CrossRefGoogle Scholar
  31. 31.
    U. Brosa, S. Grossmann, and A. Muller, “Nuclear Fission,” Phys. Rep. 197, 167–262 (1990).CrossRefADSGoogle Scholar
  32. 32.
    V. Weisskopf, “Statistics and Nuclear Reactions,” Phys. Rev. 52, 295–303 (1937).CrossRefADSGoogle Scholar
  33. 33.
    A. S. Iljinov et al., “Phenomenological Statistical Analysis of Level Densities, Decay Width and Lifetimes of Exited Nuclei,” Nucl. Phys. A 543, 517–557 (1992).CrossRefADSGoogle Scholar
  34. 34.
    A. R. Junghans et al., “Projectile-Fragment Yields As a Probe for the Collective Enhancement in the Nuclear Level Density,” Nucl. Phys. A 629, 635–655 (1998).CrossRefADSGoogle Scholar
  35. 35.
    H. J. Krappe, “Temperature Dependence of the Nuclear Free Energy Based on a Finite-Range Mass Formula,” Phys. Rev. C 59, 2640 (1999).CrossRefADSGoogle Scholar
  36. 36.
    N. Carjan and M. Kaplan, “Asymmetric Fission of 149Yb from the Finite-Range, Rotating-Liquid-Drop Model: Mean Total Kinetic Energies for Binary Fragmentation,” Phys. Rev. C 45(5), 2185–2195 (1992).CrossRefADSGoogle Scholar
  37. 37.
    S. J. Sanders, Szanto De Toledo A., and Beck C., “Binary Decay of Light Nuclear Systems,” Phys. Rep. 311, 487–551 (1999).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • E. G. Ryabov
    • 1
  • A. V. Karpov
    • 2
  • G. D. Adeev
    • 2
  1. 1.Omsk State UniversityOmskRussia
  2. 2.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations