Influence of group rearing on sexual behavior of Drosophila melanogaster males

  • A. A. Goncharova
  • Yu. V. Bragina
  • S. A. Fedotov
  • N. G. Kamyshev
Comparative and Ontogenic Physiology


Social interactions are able to strongly influence animal physiology and behavior. As is known, social experience can lead to changes in sexual and aggressive behavior, circadian rhythms and composition of cuticular hydrocarbons in Drosophila. Previously, we have shown that housing Drosophila males in monosexual groups of 20 individuals for 3 days after eclosion leads to a strong and long-term suppression of locomotor activity as revealed at individual testing, in contrast to males kept separately. The present research addressed courtship behavior, and specifically song production, in Drosophila males reared under similar conditions. It was found that rearing males in monosexual groups leads to a suppression of courtship and song production as well as to a simultaneous increase in locomotor activity when tested with a moving female. The latter effect was due to the strong urge of males to avoid interindividual contacts that prevented triggering the courtship ritual. It was suggested that intermale aggression caused by group rearing generates a state similar to conditioned fear.

Key words

Drosophila social experience group keeping sexual behavior song production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lupien, S.J., McEwen, B.S., Gunnar, M.R., and Heim, C., Effects of stress throughout the lifespan on the brain, behaviour and cognition, Nat. Rev. Neurosci., 2009, vol. 10, no. 6, pp. 434–445.CrossRefGoogle Scholar
  2. 2.
    Lee, H.J., Caldwell, H.K., Macbeth, A.H., Tolu, S.G., and Young, W.S., A conditional knockout mouse line of the oxytocin receptor, Endocrinology, 2008, vol. 149, no. 7, pp. 3256–3263.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Curley, J.P., Jensen, C.L., Mashoodh, R., and Champagne, F.A., Social influences on neurobiology and behavior: epigenetic effects during development, Psychoneuroendocrinology, 2011, vol. 36, no. 3, pp. 352–371.CrossRefPubMedGoogle Scholar
  4. 4.
    Billeter, J.C., Jagadeesh, S., Stepek, N., Azanchi, R., and Levine, J.D., Drosophila melanogaster females change mating behaviour and offspring production based on Social context, Proc. Biol. Sci., 2012, vol. 279, no. 1737, pp. 2417–2425.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Maynard Smith, J., Fertility, mating behavior and sexual selection in Drosophila subobscura, J. Genet., 1956, vol. 54, pp. 261–279.Google Scholar
  6. 6.
    Sene, F., Effect of social isolation on behavior of Drosophila silvestris from Hawaii, Proc. Hawaii. Entomol. Soc., 1977, vol. 22, pp. 469–474.Google Scholar
  7. 7.
    Bastock, M. and Manning, A., The courtship of Drosophila melanogaster, Behav., 1955, vol. 8, pp. 85–111.CrossRefGoogle Scholar
  8. 8.
    Ellis, L.B. and Kessler, S., Differential posteclosion housing experiences and reproduction in Drosophila, Anim. Behav., 1975, vol. 23, no. 4, pp. 949–952.CrossRefPubMedGoogle Scholar
  9. 9.
    Ueda, A. and Kidokoro, Y., Aggressive behaviours of female Drosophila melanogaster are influenced by their social experience and food resources, Physiol. Entomol., 2002, vol. 27, pp. 21–28.CrossRefGoogle Scholar
  10. 10.
    Yuan, Q., Song, Y., Yang, C.H., Jan, L.Y., and Jan, Y.N., Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila, Nat. Neurosci., 2014, vol. 17, no. 1, pp. 81–88.CrossRefPubMedGoogle Scholar
  11. 11.
    Kent, C., Azanchi, R., Smith, B., Formosa, A., and Levine, J.D., Social context influences chemical communication in D. melanogaster Males, Curr. Biol., 2008, vol. 18, pp. 1384–1389.CrossRefPubMedGoogle Scholar
  12. 12.
    Krupp, J.J., Kent, C., Billeter, J.-C., Azanchi, R., So, A.K.-C., Schonfeld, J.A., Smith, B.P., Lucas, C., and Levine, J.D., Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster, Curr. Biol., 2008, vol. 18, pp. 1373–1383.CrossRefPubMedGoogle Scholar
  13. 13.
    Farine, J.-P., Ferveur, J.-F., and Everaerts, C., Volatile Drosophila cuticular pheromones are affected by social but not sexual experience, PLoS ONE, 2012, vol. 7, no. 7, e40396.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Panova, A.A., Bragina, J.V., Danilenkova, L.V., Besedina, N.G., Kamysheva, E.A., Fedotov, S.A., and Kamyshev, N.G., Group rearing leads to longterm changes in locomotor activity of Drosophila males, Open J. Anim. Sci., 2013, vol. 3, no. 4B, pp. 31–35.CrossRefGoogle Scholar
  15. 15.
    Kamyshev, N.G., Kamysheva, E.A., Smirnova, G.P., and Parfeniuk, I.V., The reciprocal training of Drosophila individuals in a group situation by the trial-and-error method, Zh. Obshch. Biol., 1994, vol. 55, no. 6, pp. 737–748. See author’s translation at Scholar
  16. 16.
    Kamyshev, N.G., Smirnova, G.P., Kamysheva, E.A., Nikiforov, O.N., Parafenyuk, I.V., and Ponomarenko, V.V., Plasticity of social behavior in Drosophila, Neurosci. Behav. Physiol., 2002, vol. 32, no. 4, pp. 401–408.CrossRefPubMedGoogle Scholar
  17. 17.
    Popov, A.V., Savvateeva-Popova, E.V., and Kamyshev, N.G., Peculiarities of acoustic communication in the fruit flies Drosophila melanogaster, Sens. Systemy, 2000, vol. 14, no. 1, pp. 60–74.Google Scholar
  18. 18.
    Kamyshev, N.G., Iliadi, K.G., and Bragina, J.V., Drosophila conditioned courtship: two ways of testing memory, Learn. Mem., 1999, vol. 6, no. 1, pp. 1–20.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Anagnostaras, S.G., Sage, J.R., and Carmack, S.A., Pavlovian fear conditioning, Encyclopedia of Psychopharmacology, Stolerman, I.P. and Price, L.H., Eds., Berlin, 2014, pp. 1–4.Google Scholar
  20. 20.
    Zwarts, L., Versteven, M., and Callaerts, P., Genetics and neurobiology of aggression in Drosophila, Fly, 2012, vol. 6, no. 1, pp. 35–48.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yurkovic, A., Wang, O., Basu, A.C., and Kravitz, E.A., Learning and mMemory associated with aggression in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no. 46, pp. 17519–17524.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Trannoy, S., Chowdhury, B., and Kravitz, E.A., Handling alters aggression and “loser” effect formation in Drosophila melanogaster, Learn. Mem., 2015, vol. 22, pp. 64–68.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gibson, W.T., Gonzalez, C.R., Fernandez, C., Ramasamy, L., Tabachnik, T., Du, R.R., Felsen, P.D., Maire, M.R., Perona, P., and Anderson, D.J., Behavioral responses to a repetitive visual threat stimulus express a persistent state of defensive arousal in Drosophila, Curr. Biol., 2015, vol. 25, no. 11, pp. 1401–1415.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gruntenko, N.E., Khlebodarova, T.M., Vasenkova, I.A., Sukhanova, M.Zh., Kaidanov, L.Z., and Raushenbakh, I.Yu., Selection for sex behavior changes the metabolism of juvenile hormone in Drosophila melanogaster, Genetika, 1998, vol. 34, no. 4, pp. 480–485.PubMedGoogle Scholar
  25. 25.
    Neckameyer, W.S. and Matsuo, H., Distinct neural circuits reflect sex, sexual maturity, and reproductive status in response to stress in Drosophila melanogaster, Neuroscience, 2008, vol. 156, pp. 841–856.PubMedGoogle Scholar
  26. 26.
    Dalla, C., Pitychoutis, P.M., Kokras, N., and Papadopoulou-Daifoti, Z., Sex differences in response to stress and expression of depressive-like behaviours in the rat, Curr. Top. Behav. Neurosci., 2011, vol. 8, pp. 97–118.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. Goncharova
    • 1
  • Yu. V. Bragina
    • 1
  • S. A. Fedotov
    • 1
  • N. G. Kamyshev
    • 1
  1. 1.Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations