Dielectric and Impedance Spectroscopic Characteristics of Lead Calcium Titanate Borosilicate Glass Ceramics


Various glass compositions (x = 0.0, 0.1, 0.3, 0.5 and 0.7) in the system 55[(PbxCa1 – x)O · TiO2] · 44[2SiO2 · B2O3] · 1V2O5 were synthesized by employing melt–quenching technique. Subsequently, their glass ceramics were obtained by given suitable heat treatment schedule. The X-ray diffractometer technique was used to identify the phase and crystal structure along with assessment of the cell parameters. The scanning electron microscope was used to study the surface morphology of the synthesized GC samples. The detailed electrical study of three GC samples, with x = 0.0, 0.3 and 0.7 was carried out using LCR meter. The lead free GC sample, x = 0.0 possesses highest dielectric constant, 19 127 at 50 Hz and 500°C due to space charge polarization.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.


  1. 1

    Aziz, M.S., Mostafa, A.G., Youssef, A.M., and Youssif, S.M.S., Electrical conductivity and dielectric properties of bulk glass V2O5 (ZnO, PbO) SrO FeO, Phys. Res. Int., 2011, vol. 2011, pp. 1–10.

    Article  CAS  Google Scholar 

  2. 2

    Shukla, N., Kumar, V., and Dwivedi, D.K., Dependence of dielectric parameters and A.C. conductivity on frequency and temperature in bulk Se90Cd8In2 glassy alloy, J. Non-Oxide Glasses, 2016, vol. 8, pp. 47–57.

    Google Scholar 

  3. 3

    Sołtys, M., Górny, A., Pisarska, J., and Pisarski, W.A., Electrical and optical properties of glasses and glass–ceramics, J. Non-Cryst. Solids, 2018, vol. 498, pp. 352–363.

    Article  CAS  Google Scholar 

  4. 4

    Feltri, A., Grandi, S., Mustarelli, P., Cutroni, M., and Mandanici, A., GeO2-doped silica glasses: An AC conductivity study, Solid State Ionics, 2002, vol. 154, pp. 217–221.

    Article  Google Scholar 

  5. 5

    Gautam, C. R., Madheshiya, A., Sharma, P., and Dwivedi, R., Synthesis and electrical properties of (Pb,Bi)TiO3 ceramics, Int. J. Appl. Ceram. Tech., 2016, vol. 13, no. 2, pp. 340–351.

    CAS  Article  Google Scholar 

  6. 6

    Puli, V.S., Pradhan, D.K., Adireddy, S., Kothakonda, M., Katiyar, R.S., and Chrisey, D.B., Effect of lead borosilicate glass addition on the crystallization, ferroelectric and dielectric energy storage properties of Ba0.9995La0.0005TiO3 ceramics, J. Alloys Compd., 2016, vol. 688, pp. 721–728.

    CAS  Article  Google Scholar 

  7. 7

    Wang, H., Liu, J., Zhai, J., Shen, B., Xiu, S., Xiao, S., and Pan, Z., Enhanced energy storage density and discharge efficiency in the strontium sodium niobate–based glass–ceramics, J. Alloys Compd., 2016, vol. 687, pp. 280–285.

    CAS  Article  Google Scholar 

  8. 8

    Sahu, A.K., Kumar, D., Parkash, O., Thakur, O.P., and Prakash, C., Lead–strontium titanate glass ceramics: II–dielectric behavior, J. Mater. Sci., 2006, vol. 41, pp. 2087–2096.

    CAS  Article  Google Scholar 

  9. 9

    Bahrami, A., Nemati, Z. A., Alizadeh, P., and Bolandi, M., Crystallization and electrical properties of [(Pb1 – xSrx) · TiO3][(2SiO2 · B2O3)][K2O] glass–ceramics, J. Mater. Process. Technol., 2008, vol. 206, pp. 126–131.

    CAS  Article  Google Scholar 

  10. 10

    Ibrahim, S., Gomaa, M.M., and Darwish, H., Influence of Fe2O3 on the physical, structural and electrical properties of sodium lead borate glasses, J. Adv. Ceram., 2014, vol. 3, no. 2, pp. 155–164.

    CAS  Article  Google Scholar 

  11. 11

    Sahu, A.K., Kumar, D., Parkash, O., Thakur, O.P., and Prakash, C., Effect of K2O/BaO ratio on crystallization, microstructure and dielectric properties of strontium titanate borosilicate glass ceramics, Ceram. Int., 2014, vol. 30, pp. 477–483.

    Article  CAS  Google Scholar 

  12. 12

    Maeder, T., Review of Bi2O3 based glasses for electronics and related applications, Int. Mater. Rev., 2013, vol. 58, no. 1, pp. 3–40.

    CAS  Article  Google Scholar 

  13. 13

    Khan, S., Kaur, G., and Singh, K., Effect of ZrO2 on dielectric, optical and structural properties of yttrium calcium borosilicate glasses, Ceram. Int., 2017, vol. 43, no. 1, part A, pp. 722–727.

  14. 14

    Abdel-Khalek, E.K., Mohamed, E.A., Salem, S.M., and Kashif, I., Structural and dielectric properties of (100 – x)B2O3–(x/2)Bi2O3–(x/2)Fe2O3 glasses and glass–ceramic containing BiFeO3 phase, J. Non–Cryst. Solids, 2018, vol. 2018, vol. 492, pp. 41–49.

  15. 15

    Gautam, C.R., Madheshiya, A., Singh, A.K., Dey, K.K., and Ghosh, M., Synthesis, optical and solid NMR studies of strontium titanate borosilicate glasses doped with TeO2, Results Phys., 2020, vol. 16, p. 102914.

    Article  Google Scholar 

  16. 16

    Partridge, G., Glass–ceramics with unusual electrical properties, Adv. Mater., 1992, vol. 4, no. 10, pp. 668–673.

    CAS  Article  Google Scholar 

  17. 17

    Dutta, B., Fahmy, N.A., and Pegg, I.L., Effect of mixed transition-metal ions in glasses. I. The P2O5–V2O5–Fe2O3 system, J. Non-Cryst. Solids, 2005, vol. 351, pp. 1958–1966.

    CAS  Article  Google Scholar 

  18. 18

    Memon, A. and Tanner, D.B., Physical and dielectric properties of Bi4 – xRxSr3Ca3Cu2O10 glasses (x = 0.5 and R = Ag, Ni), J. Mater. Sci., 1999, vol. 34, pp. 3853–3858.

    CAS  Article  Google Scholar 

  19. 19

    Sanjay Kishore, N. and Agarwal, A., Study of structural, optical and transport properties of semiconducting Fe2O3–PbO–B2O3 glasses, Indian J. Pure Appl. Phys., 2010, vol. 48, pp. 205–211.

    Google Scholar 

  20. 20

    Dutta, B., Fahmy, N.A., and Pegg, I.L., Effect of mixed transition–metal ions in glasses. Part III: The P2O5–V2O5–MnO system, J. Non-Cryst. Solids, 2006, vol. 352, nos. 21–22, pp. 2100–2108.

    CAS  Article  Google Scholar 

  21. 21

    Al-Hajry, A., Al-Shahrani, A., and El-Desoky, M.M., Structural and other physical properties of barium vanadate glasses, Mater. Chem. Phys., 2006, vol. 95, pp. 300–306.

    CAS  Article  Google Scholar 

  22. 22

    Hassaan, M.Y., Osman, H.M., Hassan, H.H., El-Deeb, A.S., and Helal, M.A., Optical and electrical studies of borosilicate glass containing vanadium and cobalt ions for smart windows applications, Ceram. Int., 2017, vol. 43, pp. 1795–1801.

    CAS  Article  Google Scholar 

  23. 23

    Margha, F.H., El-Bassyouni, T.G., and Turky, G.M., Enhancing the electrical conductivity of vanadate glass system (Fe2O3, B2O3, V2O5) via doping with sodium or strontium cations, Ceram. Int., 2019, vol. 45, pp. 11838–11843.

    CAS  Article  Google Scholar 

  24. 24

    Abd El All, S. and Ezz-Eldin, F.M., Electrical conductivity of gamma-irradiated V2O5 doped lithium disilicate glasses doped and their glass–ceramics derivatives, Nucl. Instrum. Methods Phys. Res., Sect. B, 2010, vol. 268, pp. 49–56.

    CAS  Google Scholar 

  25. 25

    Srikumat, T., Rao, C.S., Gasndhi, Y., Venkatramaiah, N., Ravikumar, V., and Veeraiah, N., Microstructural, dielectric and spectroscopic properties of Li2O–Nb2O5–ZrO2–SiO2 glass system crystallized with V2O5, J. Phys. Chem. Solids, 2011, vol. 72, pp. 190–200.

    Article  CAS  Google Scholar 

  26. 26

    Herczog, A., Application of glass–ceramics for electronic components and circuits, IEEE Trans. Parts, Hybrids Packag., 1973, vol. 9, no. 4, pp. 247–256.

    CAS  Article  Google Scholar 

  27. 27

    Gautam, C.R., Madheshiya, A., and Mazumder, R., Preparation, crystallization, microstructure and dielectric properties of lead bismuth titanate borosilicate glass ceramics, J. Adv. Ceram., 2014, vol. 3, no. 3, pp. 194–206.

    CAS  Article  Google Scholar 

  28. 28

    Gautam, C.R., Manpoong, C.W., Gautam, S.S., Singh, A.K., Madheshiya, A., and Tamuk, M., Synthesis, microstructure and dielectric properties of (Sr, Bi)TiO3 borosilicate glass–ceramics, J. Ceram. Sci. Technol., 2016, vol. 7, pp. 79–86.

    Google Scholar 

  29. 29

    Kumar, D., Gautam, C.R., and Parkash, O., Preparation and dielectric characterization of ferroelectric (PbxSr 1 – x)TiO3 glass ceramics doped with La2O3, Appl. Phys. Lett., 2006, vol. 89, no. 11, p. 112908.

    Article  CAS  Google Scholar 

  30. 30

    Yadav, A.K., Gautam, C.R., and Singh, P., Crystallization and dielectric properties of Fe2O3 doped barium strontium titanate borosilicate glass, RSC Adv., 2015, vol. 5, no. 4, pp. 2819–2826.

    CAS  Article  Google Scholar 

  31. 31

    Singh, A.K., Gautam, C.R., Madheshiya, A., and Dwivedi, R.K., Doping effect of CrO3 on crystallization and dielectric behavior of strontium titanate borosilicate glass ceramics, J. Mater. Sci.—Mater. Electron., 2017, vol. 28, no. 5, pp. 4161–4169.

    CAS  Article  Google Scholar 

  32. 32

    Madheshiya, A., Gautam, C., and Upadhyay, S., Preparation, optical and electrical properties of bismuth substituted lead titanate borosilicate glass and glass ceramics, J. Non-Cryst. Solids, 2018, vol. 502, pp. 118–127.

    CAS  Article  Google Scholar 

  33. 33

    Madheshiya, A., Gautam, C.R., and Srivastava, K.K., Fabrication of lead–bismuth titanate borosilicate glass ceramics and dielectric characteristics doped with GNPs, Mater. Res. Express, 2020, vol. 7, pp. 1–17.

    Article  CAS  Google Scholar 

  34. 34

    Das, S., Madheshiya, A., Ghosh, M., Dey, K.K., Gautam, S.S., Singh, J., Mishra, R., and Gautam, C.R., Structural, optical, and nuclear magnetic resonance studies of V2O5-doped lead calcium titanate borosilicate glasses, J. Phys. Chem. Solids, 2019, vol. 126, pp. 17–26.

    CAS  Article  Google Scholar 

  35. 35

    Patterson, A.L., The Scherrer formula for X-ray particle size determination, Phys. Rev., 1939, vol. 56, pp. 978–982.

    CAS  Article  Google Scholar 

  36. 36

    Rahman, M., Haider, J., Akter, T., and Hashmi, M.S.J., Techniques for assessing the properties of advanced ceramic materials, in Comprehensive Materials Processing, Vol. 1: Assessing Properties of Conventional and Specialized Materials, Ed. by S. Hashmi (Elsevier, Amsterdam, 2014), pp. 3–34.

  37. 37

    Tripathy, D. and Pandey, A., Structural and impedance studies of TiIV and NbV co-doped bismuth vanadate system, J. Alloys Compd., 2018, vol. 737, pp. 136–143.

    CAS  Article  Google Scholar 

  38. 38

    Belgacem, R.B., Chaari, M., Brana, A.F., Garcia, B.J., and Matoussi, A., Structural, electric modulus and complex impedance analysis of ZnO/TiO2 composite ceramics, J. Am. Ceram. Soc., 2017, vol. 100, pp. 2045–2058.

    Article  CAS  Google Scholar 

  39. 39

    Jakkula, S. and Deshpande, V., Effect of MgO addition on the properties of PbO–TiO2–B2O3 glass and glass–ceramics, Ceram. Int., 2013, vol. 39, pp. S15–S18.

    CAS  Article  Google Scholar 

  40. 40

    Wypych, A., Bobowska, I., Tracz, M., Opasinska, A., Kadlubowski, S., Krzywania-Kaliszewska, A., Grobelny, J., and Wojciechowski, P., Dielectric properties and characterization of titanium dioxide obtained by different chemistry methods, J. Nanomater., 2014, vol. 2014, pp. 1–9.

    Article  CAS  Google Scholar 

  41. 41

    Berberich, L.J. and Bell, M.E., The dielectric properties of the rutile form of TiO2, J. Appl. Phys., 1940, vol. 11, pp. 681–692.

    CAS  Article  Google Scholar 

  42. 42

    Dutta, A. and Sinha, T. P., Dielectric relaxation in perovskite BaAl1/2Nb1/2O3, J. Phys. Chem. Solids, 2006, vol. 67, pp. 1484–1491.

    CAS  Article  Google Scholar 

  43. 43

    Pu, Y., Dong, Z., Zhang, P., Wu, Y., Zhao, J., and Luo, Y., Dielectric, complex impedance and electrical conductivity studies of the multiferroic Sr2FeSi2O7-crystallized glass–ceramics, J. Alloys Compd., 2016, vol. 672, pp. 64–71.

    CAS  Article  Google Scholar 

  44. 44

    Das, S., Madheshiya, A., Gautam, S.S., Gautam, C., and Tripathy, D., Electrical characteristics of PbO–CaO–TiO2–SiO2–B2O3 glass ceramics doped with germanium, J. Mater. Sci.—Mater. Electron., 2019, vol. 30, pp. 2431–2441.

    CAS  Article  Google Scholar 

  45. 45

    Bhargavi, G.N., Khare, A., Badapanda, T., Anwar, M.S., and Brahme, N., Electrical characterizations of BaZr0.05Ti0.95O3 perovskite ceramic by impedance spectroscopy, electric modulus and conductivity, J. Mater. Sci.—Mater. Electron., 2017, vol. 28, no. 22, pp. 16956–16964.

    CAS  Article  Google Scholar 

Download references


Authors are grateful to TEQIP II, NERIST for affording the requisite finances to perform the experimental work and investigations. Authors would like to recognize DST, New Delhi for giving FIST facility in the Department of Physics, NERIST for XRD and dielectric experiments vide Approval Order Number SB/52/CMP-093/2013. One of the author i.e. C.R.G. particularly acknowledged to the Science and Engineering Research Board, Department of Science and Technology (SERB–DST) New Delhi, India for availing the financial aid under Empowerment and Equity Opportunities for Excellence in Science (File no. EEQ/2018/000647).

Author information



Corresponding author

Correspondence to Chandkiram Gautam.

Ethics declarations

The authors declare to have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sangeeta Das, Madheshiya, A., Gautam, S.S. et al. Dielectric and Impedance Spectroscopic Characteristics of Lead Calcium Titanate Borosilicate Glass Ceramics. Glass Phys Chem 46, 514–525 (2020). https://doi.org/10.1134/S108765962101003X

Download citation


  • glass and glass ceramics
  • dielectric properties
  • SEM
  • impedance spectroscopy