Synthesis and Properties of Heat Resistant Coatings Based on a Si–B4C–ZrB2–ZrO2 Composition

Abstract

This article discusses the influence of nanosized particles of zirconium dioxide on the properties of a heat-resistant coating synthesized by the suspension annealing of a silicon–boron carbide–zirconium diboride composition. The heat resistance of coatings on graphite and high silica ceramic substrates is studied, and the phase composition, morphology, hardness, and electric resistance of the coatings are determined.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    Dvorina, L.A. and Dranenko, A.S., Application of refractory compounds in microelectronics, Poroshk. Metall., 2000, nos. 9–10, pp. 116–221.

  2. 2

    Kats, S.M., Vysokotemperaturnye teploizolyatsionnye materialy (High Temperature Insulation Materials), Moscow: Metallurgiya, 1981.

  3. 3

    Khamova, T.A., Development and research of composite materials based on modified silica sols and dispersed aluminum oxides, Extended Abstract of Dissertation, St. Petersburg: IKhS RAN, 2010.

  4. 4

    Gonzalez-Julian, J., Cedillos-Barraza, O., Doring, S., and Nolte, S., Enhanced oxidation resistance of ZrB2/SiC composite through in situ reaction of gadolinium oxide in patterned surface cavities, J. Eur. Ceram. Soc., 2014, vol. 34, pp. 4157–4166.

    CAS  Article  Google Scholar 

  5. 5

    Grigoriev, O.N., Galanov, B.A., Lavrenko, V.A., and Pansasyuk, A.D., Oxydation of ZrB2–SiC–ZrSi2 ceramics in oxygen, J. Eur. Ceram. Soc., 2010, vol. 30, pp. 2397–2405.

    CAS  Article  Google Scholar 

  6. 6

    Yang, J., Liu, Z., Wang, J., Wang, H., Guo, Q., Song, J., and Liu, L., The structure of MB2–MC–C (M = Zr, Hf, Ta) multi-phase ceramic coatings on graphite, J. Eur. Ceram. Soc., 2014, vol. 34, pp. 2895–2904.

    CAS  Article  Google Scholar 

  7. 7

    Simonenko, N.P., Simonenko, E.P., Sevastyanov, V.G., and Kuznetsov, N.T., Production of 8% Y2O3-92% ZrO2 (8YSZ) thin films by sol–gel technology, Russ. J. Inorg. Chem., 2015, vol. 60, no. 7, pp. 795–803.

    CAS  Article  Google Scholar 

  8. 8

    Silvestroni, L., Nyngren, M., and Sciti, D., Study of the interactions between HfB2 and Hi-Nicalon fiber, J. Eur. Ceram. Soc., 2013, vol. 33, pp. 2879–2888.

    CAS  Article  Google Scholar 

  9. 9

    Zamora, V., Ortiz, A.L., Guiberteau, F., and Nygren, M., Crystal-size dependence of the spark-plasma-sintering kinetics of ZrB2 ultra-high-temperature ceramics, J. Eur. Ceram. Soc., 2013, vol. 33, pp. 271–276.

    Google Scholar 

  10. 10

    Nikolaev, A.N., Ban’kovskaya, I.B., Kolovertnov, D.V., and Polyakova, I.G., Study of synthesis and evaluation of heat-resistant coatings based on silicon–boron carbide–zirconium boride–aluminum oxide composite, Glass Phys. Chem., 2018, vol. 44, no. 5, pp. 450–454.

    Article  Google Scholar 

  11. 11

    Nikolaev, A.N., Ban’kovskaya, I.B., Pugachev, K.E., and Kolovertnov, D.V., Study of morphology and hardness of coatings based on the composition of Si–B4C–ZrB2, Glass Phys. Chem., 2019, vol. 45, no. 2, pp. 143–146.

    CAS  Article  Google Scholar 

  12. 12

    Ban’kovskaya, I.B., Vasil’eva, I.A., and Kolovertnov, D.V., Oxidation processes in a silicon–boron–zirconium boride composite in the temperature range 1000–1300°C, Glass Phys. Chem., 2012, vol. 38, no. 3, pp. 327–331.

    Article  Google Scholar 

  13. 13

    Ulyanova, T.M. and Krut’ko, N.P., Nanoparticle formation in the synthesis of nanostructured fibers and powders of refractory oxides, Int. J. Nanotechnol., 2006, vol. 3, no. 1, pp. 47–56.

    CAS  Article  Google Scholar 

  14. 14

    Ulyanova, T.M., Vitiaz, P.A., Krut’ko, N.P., Titova, L.V., Medichenko, S.V., and Shevchonok, A.A., Nano-structured ZrO2(Y2O3)–Al2O3 fibrous powders for composite materials, in Proceedings of the PM2010 World Congress–Nanotechnology, Florence, Italy, October 11–14, 2010, Vol. 2, manuscript 421, pp. 126–133.

  15. 15

    Popok, V.N. and Bychin, N.V., Investigation of the parameters of oxidation of powders of metals and non-metals in air, Issled. Ross., 2013, pp. 405–415; Polzunov. Vestn., 2010, no. 4-1, pp. 71–78.

  16. 16

    Vasina, E.S., Matveichikova, P.V., Sychev, M.M., Krasovskii, A.N., Novikov, D.V., and Rozhkova, N.N., Fractal-cluster structure of BaTiO3 in a polyvinyl ether cyanoethyl ether matrix in the presence of shungite, in Mezhdunarodnyi Simpozium Khimiya dlya biologii, meditsiny, ekologii i sel’skogo khozyaistva ISCHEM (International Symposium Chemistry for Biology, Medicine, Ecology and Agriculture), 2015, p. 101.

Download references

ACKNOWLEDGMENTS

We thank I.G. Polyakova for carrying out the XRD and DTA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. B. Ban’kovskaya.

Ethics declarations

The authors declare to have no conflict of interest.

Additional information

Translated by I. Moshkin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, A.N., Ban’kovskaya, I.B. & Kolovertnov, D.V. Synthesis and Properties of Heat Resistant Coatings Based on a Si–B4C–ZrB2–ZrO2 Composition. Glass Phys Chem 46, 614–619 (2020). https://doi.org/10.1134/S1087659620060188

Download citation

Keywords:

  • silicon
  • boron carbide
  • zirconium boride
  • zirconium dioxide
  • heat-resistant coating
  • vitreous melt
  • heat resistance