Comparative Study of Luminophores in the System ZrO2–Y2O3–Eu2O3 Obtained by Wet Mixing and Coprecipitation Followed by Microwave Treatment

Abstract

It is shown that the high-temperature (1100°C) microwave treatment of the ZrO2–Y2O3–Eu2O3 luminophores obtained by wet mixing using zirconium oxochloride and yttrium acetate leads to a significant growth in the luminescence brightness that exceeds that of an industrial luminophore based on Y2O3 : Eu3+ by a factor of 1.75. For a luminophore with the identical composition obtained by the coprecipitation of hydroxides from a solution of the corresponding nitrates, a similar microwave thermal treatment leads to a sharp decrease in the brightness. The observed differences in the characteristics of the synthesized luminophores are compared to the changes in the functional composition of their surface and dispersity as a result of the microwave treatment.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Tamrakar, R.K., Bisen, D.P., and Upadhyay, K., Photoluminescence behavior of ZrO2 : Eu3+ with variable concentration of Eu3+ doped phosphor, J. Radiat. Res. Appl. Sci., 2015, vol. 8, pp. 11–16.

    CAS  Article  Google Scholar 

  2. 2

    Lam, T.K.G., Opalinska, A., Chudoba, T., Benkowski, K., Lojkowski, W., Tran, K.A., Nguyenand, T.B., and Le, Q.M., Preparation and characterization of ZrO2:Er3+,Yb3+ nanoparticles using a high pressure assisted soft template, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2010, vol. 1, pp. 025008–025013.

    Google Scholar 

  3. 3

    Janney, M.A., Kimrey, H.D., and Kiggins, J.O., Microwave proceedings of ceramics: Guide-lines used of the Oak Ridge Laboratory, MRS Symp. Proc., 1992, vol. 269, pp. 173–185.

  4. 4

    Keskinova, M.V., Ogurtsov, K.A., Sychov, M.M., Kolobkova, E.V., Turkin, I.A., Nakanishi, Y., and Hara, K., Synthesis of chlorine-silicate phosphors for white light-emitting diodes, Adv. Mater. Res., 2015, vol. 1117, pp. 48–51.

    Article  Google Scholar 

  5. 5

    Turkin, I.A., Keskinova, M.V., Sychov, M.M., Ogurtsov, K.A., Hara, K., Nakanishi, Y., and Shilova, O.A., Microwave synthesis of Eu-doped silicate phosphor, JJAP Conf. Proc., 2016, pp. 011108-1–011108-6.

  6. 6

    Morozova, L.V., Kalinina, M.V., Koval’ko, N.Yu., Arsent’ev, M.Yu., and Shilova, O.A., Preparation of zirconia-based nanoceramics with a high degree of tetragonality, Glass Phys. Chem., 2014, vol. 40, no. 3, pp. 352–355.

    CAS  Article  Google Scholar 

  7. 7

    Koval’ko, N.Yu., Kalinina, M.V., Maslennikova, T.P., Morozova, L.V., Myakin, S.V., Khamova, T.V., Arsent’ev, M.Yu., and Shilova, O.A., Comparative study of powders based on the ZrO2–Y2O3–SeO2 system obtained by various liquid phase methods of synthesis, Glass Phys. Chem., 2018, vol. 44, no. 5, pp. 433–439.

    Article  Google Scholar 

  8. 8

    Koval'ko, N.Yu., Dolgin, A.S., Efimova, L.N., Arsent’ev, M.Yu., and Shilova, O.A., Liquid-phase synthesis and investigation of powders based on zirconium dioxide, Glass Phys. Chem., 2018, vol. 44, no. 6, pp. 626–631.

    CAS  Article  Google Scholar 

  9. 9

    Koval’ko, N.Yu., Kalinina, M.V., Malkova, A.N., Lermontov, S.A., Morozova, L.V., Polyakova, I.G., and Shilova, O.A., Synthesis and comparative studies of xerogels, aerogels, and powders based on the ZrO2–Y2O3–CeO2 system, Glass Phys. Chem., 2017, vol. 43, no. 4, pp. 368–375.

    Article  Google Scholar 

  10. 10

    Smits, K., Grigorjeva, L., Millers, D., Sarakovskis, A., Opalinska, A., Fidelus, J.D., and Lojkowski, W., Europium doped zirconia luminescence, Opt. Mater., 2010, pp. 827–831.

  11. 11

    Savchenko, N.L., Sablina, T.Yu., and Mel’nikova, A.G., Formation of α-Al2O3 fibers in ZrO2–Y2O3–Al2O3 ceramics, Ogneupory Tekh. Keram., 2005, no. 10, pp. 13–15.

  12. 12

    Umanskii, Ya.S., Skakov, Yu.A., Ivanov, A.N., and Rastorguev, L.N., Kristallografiya, rentgenografiya i elektronnaya mikroskopiya (Crystallography, X-ray Diffractometry, and Electron Microscopy), Moscow: Metallurgiya, 1982.

  13. 13

    Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, Nanotechnology), Moscow: Fizmatlit, 2005.

  14. 14

    Sychev, M.M., Minakova, T.S., Slizhov, Yu.G., and Shilova, O.A., Kislotno-osnovnye kharakteristiki poverkhnosti tverdykh tel i upravlenie svoistvami materialov i kompozitov (Acid-Base Characteristics of Solid Surfaces and Control of Properties of Materials and Composites), St. Petersburg: Khimizdat, 2016.

  15. 15

    Nechiporenko, A.P., Donorno-aktseptornye svoistva poverkhnosti tverdofaznykh sistem. Indikatornyi metod (Donor–Acceptor Properties of the Surface of Solid-Phase Systems. Indicator Method), St. Petersburg: Lan’, 2017.

  16. 16

    Wang, W.N., Widiyastuti, W., Ogi, T., Lenggoro, W., and Okuyama, K., Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors, Chem. Mater., 2007, vol. 19, no. 7, pp. 1723–1730.

    CAS  Article  Google Scholar 

  17. 17

    Bugrov, A.N., Smyslov, R.Yu., Zavialova, A.Yu., Kirilenko, D.A., and Pankin, D.V., Phase composition and photoluminescence correlations in nanocrystalline ZrO2 : Eu3+ phosphors synthesized under hydrothermal conditions, Nanosyst.: Phys., Chem., Math., 2018, vol. 9, no. 3, pp. 378–388.

    CAS  Google Scholar 

  18. 18

    Bakhmetyev, V.V., Minakova, T.S., Mjakin, S.V., Lebedev, L.A., Vlasenko, A.B., Nikandrova, A.A., Ekimova, I.A., Eremina, N.S., Sychov, M.M., and Ringuede, A., Synthesis and surface characterization of nanosized Y2O3 : Eu and YAG:Eu luminescent phosphors which are useful for photodynamic therapy of cancer, Eur. J. Nanomed., 2016, vol. 8, no. 4, pp. 173–184.

    CAS  Article  Google Scholar 

  19. 19

    Pustovarov, V.A, Spektroskopiya redkozemel’nykh ionov (Rare Earth Ion Spectroscopy), Yekaterinburg: URFU, 2016.

  20. 20

    Kolobkova, E.V., Melekhin, V.G., and Penigin, A.S., Optical glass-ceramics based on fluorine-containing silicate glasses doped with rare-earth ions, Glass Phys. Chem., 2007, vol. 33, no. 1, pp. 8–13.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. V. Keskinova.

Ethics declarations

The authors declare to have no conflict of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keskinova, M.V., Konstantinova, D.A., Myakin, S.V. et al. Comparative Study of Luminophores in the System ZrO2–Y2O3–Eu2O3 Obtained by Wet Mixing and Coprecipitation Followed by Microwave Treatment. Glass Phys Chem 46, 584–588 (2020). https://doi.org/10.1134/S1087659620060115

Download citation

Keywords:

  • luminophore
  • zirconium oxide
  • yttrium oxide
  • europium
  • coprecipitation
  • wet mixing
  • microwave treatment