Ways of Formation and Features of Development of the Crystal Phase in Amorphous Material (A Review)


An analytical review of the publications in the field of research of factors that have a significant impact on the process of controlled crystallization in various glass systems is carried out. An integrated approach to the given problem is proposed, which includes the use of a number of theoretical calculation methods and effective practical research methods, which are most informative in the field of studying the formation and development of crystalline phases in amorphous material.

This is a preview of subscription content, access via your institution.


  1. 1

    Grushko, I.S. and Maslakov, M.P., Formation of the crystalline phase in the foam-glass matrix and its effect on the performance properties of the material, Steklo Keram., 2018, no. 12, pp. 10–16.

  2. 2

    Sycheva, G.A. and Polyakova, I.G., Surface crystallization of glass based on blast furnace slags, Glass Phys. Chem., 2016, vol. 42, no. 4, pp. 372–378.

    CAS  Article  Google Scholar 

  3. 3

    Sycheva, G.A., Homogeneous and heterogeneous nucleation of crystals of silver-containing glass and their optical properties, Glass Phys. Chem., 2015, vol. 41, no. 4, pp. 398–401.

    CAS  Article  Google Scholar 

  4. 4

    Sycheva, G.A., Polyakova, I.G., and Kostyreva, T.G., Volumetric nucleation of crystals catalyzed by Cr2O3 in glass based on furnace slags, Glass Phys. Chem., 2016, vol. 42, no. 3, pp. 238–245.

    CAS  Article  Google Scholar 

  5. 5

    Filipovich, V.N., Kalinina, A.M., and Sycheva, G.A., Glass formation and catalyzed nucleation of crystals, in Stekloobraznoe sostoyanie. Trudy VIII Vsesoyuznogo soveshchaniya po stekloobraznomu sostoyaniyu (Proceedings of the 8th All-Union Workshop on Glass-Like State), Leningrad: Nauka, 1988, pp. 87–96.

  6. 6

    Sycheva, G.A. and Polyakova, I.G., Volume nucleation of crystals in glass based on blast-furnace slag, Glass Phys. Chem., 2013, vol. 39, no. 3, pp. 248–260.

    CAS  Article  Google Scholar 

  7. 7

    Murashkevich, A.N. and Zharskii, I.M., Teoriya i metody vyrashchivaniya monokristallov: ucheb. posobie (Theory and Methods of Growing Single Crystals, The School-Book), Minsk: BGTU, 2010.

  8. 8

    Kaz’mina, O.V., Vereshchagin, V.I., and Semukhin, B.S., Structure and strength of foam-glass-crystalline materials produced from a glass granulate, Glass Phys. Chem., 2011, vol. 37, no. 4, pp. 371–377.

    Article  Google Scholar 

  9. 9

    Kaz’mina, O.V., Semukhin, B.S., Ivanov, Yu.F., and Kaz’min, V.P., The peculiarities of the formation of nanostructures glass foam crystalline materials, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2013, no. 12, pp. 43–46.

  10. 10

    Kaz’mina, O.V. and Kuznetsova, N.A., Production of high effective heat insulating construction material based on thermal power ash and slag waste, Ogneupory Tekh. Keram., 2012, nos. 1–2, pp. 78–82.

  11. 11

    Kaz’mina, O.V., Kuznetsova, N.A., Vereshchegin, V.I., and Kaz’min, V.P., Production of foam-glass materials based on ash-and-slag waste from thermal power plants, Izv. Tomsk. Politekh. Univ., 2011, vol. 319, no. 3, pp. 52–56.

    Google Scholar 

  12. 12

    Suslyaev, V.I., Kaz’mina, O.V., Semukhin, B.S., Zemlyanukhin, Yu.P., and Dorozhkin, K.V., Study of the electromagnetic characteristics of glass-crystalline foam, Izv. Vyssh. Uchebn. Zaved., Fiz., 2012, vol. 55, no. 9/2, pp. 312–314.

  13. 13

    Semukhin, B.S., Kaz’mina, O.V., Volkova, A.Yu., and Suslyaev, V.I., Physical characteristics of foam glass modified with zirconium dioxide, Russ. Phys. J., 2017, vol. 59, no. 12, pp. 2130–2136.

    CAS  Article  Google Scholar 

  14. 14

    Gusev, A.I. and Rempel’, A.A., Nanokristallicheskie materialy (Nanocrystalline Materials), Moscow: Fizmatlit, 2001.

  15. 15

    Berezhnoi, A.I., Sitally i fotositally (Sitalls and Photo Sitalls), Moscow: Mashinostroenie, 1966.

  16. 16

    Andreev, N.S., Mazurin, O.V., and Porai-Koshits, E.A., Yavlenie likvatsii v steklakh (The phenomenon of Liquation in Glasses), Leningrad: Nauka, 1974.

  17. 17

    Andreola, F., Barbieri, L., Lancellotti, I., Martín, M.I., Rincòn, J.M., and Romero, M., Thermal approach to evaluate the sintering-crystallization ability in a nepheline-forsterite-based glass-ceramics, J. Therm. Anal. Calorim., 2016, vol. 123, no. 1, pp. 241–248.

    CAS  Article  Google Scholar 

  18. 18

    Taurino, R., Lancellotti, I., Barbieri, L., and Leonelli, C., Glass-ceramic foams from borosilicate glass waste, Int. J. Appl. Glass Sci., 2014, vol. 5, no. 2, pp. 136–145.

    CAS  Article  Google Scholar 

  19. 19

    Zhang, W. and Liu, H., A low cost route for fabrication of wollastonite glass-ceramics directly using soda-lime waste glass by reactive crystallization-sintering, Ceram. Int., 2013, vol. 39, no. 2, pp. 1943–1949.

    CAS  Article  Google Scholar 

  20. 20

    Tulyaganov, D.U., Ventura, J.M.G., Kannan, S., Saranti, A., Karakassides, M.A., and Ferreira, J.M.F., Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives, J. Non-Cryst. Solids, 2006, vol. 352, no. 4, pp. 322–328.

    Article  Google Scholar 

  21. 21

    Schabbach, L.M., Andreola, F., Karamanova, E., Lancellotti, I., Karamanov, A., and Barbieri, L., Integrated approach to establish the sinter-crystallization ability of glasses from secondary raw material, J. Non-Cryst. Solids, 2011, vol. 357, no. 1, pp. 10–17.

    CAS  Article  Google Scholar 

  22. 22

    Karamanov, A., Maccarini Schabbach, L., Karamanova, E., Andreola, F., Barbieri, L., Ranguelov, B., Avdeev, G., and Lancellotti, I., Sinter-crystallization in air and inert atmospheres of a glass from pre-treated municipal solid waste bottom ashes, J. Non-Cryst. Solids, 2014, vol. 389, no. 4, pp. 50–59.

    CAS  Article  Google Scholar 

  23. 23

    Smiljanić, S., Karamanova, E., Grujić, S., Rogan, J., Stojanović, J., Matijašević, S., and Karamanov, A., Sintering, crystallization and foaming of La2O3–SrO–5B2O3 glass powders—effect of the holding temperature and the heating rate, J. Non-Cryst. Solids, 2018, vol. 481, no. 2, pp. 375–382.

    Article  Google Scholar 

  24. 24

    Kamusheva, A., Hamzawy, E.M.A., and Karamanov, A., Crystallization and structure of glass—ceramic from electric arc furnace slag, J. Chem. Technol. Metall., 2015, vol. 50, no. 4, pp. 512–519.

    Google Scholar 

  25. 25

    Avramova, K., Karamanov, A., and Avramov, I., Variations in non-isothermal surface crystallization kinetics due to minor composition changes, J. Non-Cryst. Solids, 2015, vol. 42815, no. 17514, pp. 49–53.

  26. 26

    Karamanov, A., Avramov, I., Arrizza, L., Pascova, R., and Gutzow, I., Variation of Avrami parameter during non-isothermal surface crystallization of glass powders with different sizes, J. Non-Cryst. Solids, 2012, vol. 358, nos. 12–13, pp. 1486–1490.

    CAS  Article  Google Scholar 

  27. 27

    Karamanov, A., Paunovic, P., Ranguelov, B., Ljatifi, E., Kamusheva, A., Nacevski, G., Karamanova, E., and Grozdanov, A., Vitrification of hazardous Fe-Ni wastes into glass-ceramic with fine crystalline structure and elevated exploitation characteristics, J. Environ. Chem. Eng., 2017, vol. 5, no. 1, pp. 432–441.

    CAS  Article  Google Scholar 

Download references


The study was carried out with the financial support of the Russian Foundation for Basic Research as part of scientific project no. 19-33-60077/19.

Author information



Corresponding author

Correspondence to I. S. Grushko.

Ethics declarations

The authors declare to have no conflict of interest.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grushko, I.S. Ways of Formation and Features of Development of the Crystal Phase in Amorphous Material (A Review). Glass Phys Chem 46, 549–561 (2020). https://doi.org/10.1134/S1087659620060103

Download citation


  • crystallization
  • glass
  • phase transition
  • kinetics
  • wastes
  • differential scanning calorimetry
  • differential thermal analysis