Dielectric Relaxation and Impedance Spectroscopy of 30V2O5 · 20Bi2O3 · 50P2O5 Glass


Dielectric properties of traditionally quenched 30V2O5 · 20Bi2O3 · 50P2O5 glass been investigated at different frequencies in temperature range of 298–573 K. X-ray diffraction (XRD) was used to confirm the amorphous nature of the formed glass and for ion. The thermal analysis was investigated by differential scanning calorimetry (DSC) technique where the temperature stability i.e. Tc–Tg of the glass sample was 207.5 K. This means that the present glass has a high thermal stability. Dielectric constant, dielectric loss, loss tangent, ac conductivity and electric modulus were calculated for the formed glass in the studied temperature range. The prepared glass has a large dielectric constant increase with temperature. The activation energy calculated from dc conductivity Edc, dielectric loss Etan δ and \({{E}_{{{{M}^{{'{\kern 1pt} '}}}}}}\) modulus frequency relaxation time was 0.180, 0.209 and 0.185 eV, respectively. Activation energy values of Edc and \({{E}_{{{{M}^{{'{\kern 1pt} '}}}}}}\) are nearly identical, indicate that the ions overcome same energy barrier in conducting and relaxing process. The small value of stretched exponent parameter (β) of 0.061 suggests good correlated motion between the ions of non-Debye-type relaxation. The semicircles formed with Nyquist diagram indicate a single-phase material with electronic type of conduction mechanism.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.


  1. 1

    Han, K., Hwang, C., Kim, D., Gwoo, D., Kim, T., Choi, W., Kee, K., Kim, J., and Ryu, B., Effects of substituting B2O3 for P2O5 on the structures and properties of V2O5–P2O5 glass systems, Electron. Mater. Lett., 2012, vol. 8, no. 6, pp. 655–658.

    CAS  Article  Google Scholar 

  2. 2

    Barde, R.V., Nemade, K.R., and Waghuley, S.A., Ac conductivity and dielectric relaxation in V2O5–P2O5–B2O3 glasses, J. Asian Ceram. Soc., 2015, vol. 3, no. 1, pp. 116–122.

    Article  Google Scholar 

  3. 3

    Kalygina, V.M., Kosintsev, V.I., Gaman, V.I., Modebadze, O.E., and Nikolaev, A.I., Electrical properties of mim structures based on vanadium-borate glass, Sov. Phys. J., 1981, vol. 24, no. 3, pp. 262–266.

    Article  Google Scholar 

  4. 4

    Miklos, P. and Doupovec, J., Dielectric properties of vanadium phosphate glasses in a combined electric field, J. Mater. Sci., 1997, vol. 32, no. 2, pp. 529–532.

    CAS  Article  Google Scholar 

  5. 5

    Shukla, D.K. and Mollah, S., Dc conductivity and dielectric properties of V2O5–Bi2O3–ZnO glass, Ind. J. Pure Appl. Phys., 2007, vol. 45, pp. 52–56.

    CAS  Google Scholar 

  6. 6

    Arthur, T.S., Kato, K., Germain, J., Guo, J., Glans, P.-A., Liu, Y.-S., Holmes, D., Fan, X., and Mizuno, F., Amorphous V2O5–P2O5 as high-voltage cathodes for magnesium batteries, Chem. Commun., 2015, vol. 51, no. 86, pp. 15657–15660.

    CAS  Article  Google Scholar 

  7. 7

    Kolavekar, S.B. and Ayachit, N.H., Conductivity and dielectric relaxations in Bi2O3-doped phospho-vanadate glasses, J. Mater. Sci.: Mater. Electron., 2019, vol. 30, no. 1, pp. 432–449.

    CAS  Google Scholar 

  8. 8

    Abdel-Wahab, F., Merazga, A., and Montaser, A.A., Electrical conductivity mechanism in unconventional lead vanadate glasses, J. Low Temp. Phys., 2017, vol. 186, no. 5, pp. 372–384.

    CAS  Article  Google Scholar 

  9. 9

    Chakraborty, S., Bera, A.K., Mollah, S., and Chaudhuri, B.K., High dielectric constants in BaTiO3 doped 90V2O5–10Bi2O3 oxide glasses obeying debye-type dielectric relaxation behavior, J. Mater. Res., 2011, vol. 9, no. 8, pp. 1932–1935.

    Article  Google Scholar 

  10. 10

    Al-Syadi, A.M., Yousef, E.S., El-Desoky, M.M., and Al-Assiri, M.S., Impedance spectroscopy of V2O5–Bi2O3–BaTiO3 glass-ceramics, Solid State Sci., 2013, vol. 26, pp. 72–82.

    CAS  Article  Google Scholar 

  11. 11

    Jiang, Z.-H. and Zhang, Q.-Y., The formation of glass: A quantitative perspective, Sci. China Mater., 2015, vol. 58, no. 5, pp. 378–425.

    CAS  Article  Google Scholar 

  12. 12

    Murawski, L.A.C., Conductivity in binary V2O5–P2O5 glasses, Philos. Mag., 1984, vol. 50, no. 6, pp. L69–L74.

    CAS  Article  Google Scholar 

  13. 13

    Hannora, A.E. and El-Desoky, M.M., Effects of heat treatment on the structural and electrical conductivity of Fe2O3–P2O5–PbO glasses, J. Mater. Sci.: Mater. Electron., 2019, vol. 30, pp. 19100–19107.

    CAS  Google Scholar 

  14. 14

    Kohlrausch, R., Theorie des Elektrischen Ruckstandes in der Leidener Flasche. Pogg, Ann. Phys. Chem., 1854, vol. 91, pp. 179–214.

    Google Scholar 

  15. 15

    Williams, G. and Watts, D.C., Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function, Trans. Faraday Soc., 1970, vol. 66, pp. 80–85.

    CAS  Article  Google Scholar 

  16. 16

    Garcia-Belmonte, G., Henn, F., and Bisquert, J., Dielectric relaxation strength in ion conducting glasses caused by cluster polarization, Chem. Phys., 2006, vol. 330, no. 1, pp. 113–117.

    CAS  Article  Google Scholar 

  17. 17

    Veeranna Gowda, V.C. and Anavekar, R.V., Transport properties of Li2O–MnO2–B2O3 glasses, Solid State Ionics, 2005, vol. 176, no. 15, pp. 1393–1401.

    Article  Google Scholar 

  18. 18

    Chelkowski, A., Dielectric Physics, Studies in Physical and Theoretical Chemistry, Amsterdam: Elsevier Scientific, 1980.

    Google Scholar 

  19. 19

    Eroğlu, A., Tataroğlu, A., and Altındal, Ş., On the temperature dependent dielectric properties conductivity and resistivity of MIS structures at 1MHz, Microelectron. Eng., 2012, vol. 91, pp. 154–158.

    Article  Google Scholar 

  20. 20

    Kao, K.C., Electric polarization and relaxation, in Dielectric Phenomena in Solids, Kao, K.C., Ed., San Diego: Academic, 2004, pp. 41–114.

    Google Scholar 

  21. 21

    Tareev, B.M., Physics of Dielectric Materials, Moscow: Mir, 1975.

  22. 22

    Singh, N., Agarwal, A., and Sanghi, S., Dielectric relaxation conductivity behavior and magnetic properties of Mg substituted Zn-Li ferrites, Curr. Appl. Phys., 2011, vol. 11, no. 3, pp. 783–789.

    Article  Google Scholar 

  23. 23

    Jogiya, B.V., Jethava, H.O., Tank, K.P., Raviya, V.R., and Joshi, M.J., Impedance and modulus spectroscopic study of nano hydroxyapatite, AIP Conf. Proc., 2016, vol. 1728, no. 1, p. 020227.

    Article  Google Scholar 

  24. 24

    Wong, Y.J., Hassan, J., and Hashim, M., Dielectric properties impedance analysis and modulus behavior of CaTiO3 ceramic prepared by solid state reaction, J. Alloys Compd., 2013, vol. 571, pp. 138–144.

    CAS  Article  Google Scholar 

  25. 25

    Jonscher, A.K., Dielectric relaxation in solids, J. Phys. D: Appl. Phys., 1999, vol. 32, no. 14, pp. R57–R70.

    CAS  Article  Google Scholar 

  26. 26

    Long, A.R., Frequency-dependent loss in amorphous semiconductors, Adv. Phys., 1982, vol. 31, no. 5, pp. 553–637.

    CAS  Article  Google Scholar 

  27. 27

    Shanmugavelu, B. and Ravi Kanth Kumar, V.V., Thermal structural and electrical studies of bismuth zinc borate glasses, Solid State Sci., 2013, vol. 20, pp. 59–64.

    CAS  Article  Google Scholar 

  28. 28

    Kolavekar, S.B. and Ayachit, N.H., Conductivity and dielectric relaxations in Bi2O3-doped phosphovanadate glasses, J. Mater. Sci.: Mater. Electron., 2019, vol. 30, pp. 432–449.

    CAS  Google Scholar 

  29. 29

    Jonscher, A.K., The ‘universal’ dielectric response, Nature (London, U.K.), 1977, vol. 267, no. 5613, pp. 673–679.

    CAS  Article  Google Scholar 

  30. 30

    Moguš-Milanković, A., Šantić, A., Reis, S.T., Furić, K., and Day, D.E., Studies of lead-iron phosphate glasses by Raman mossbauer and impedance spectroscopy, J. Non-Cryst. Solids, 2005, vol. 351, no. 40, pp. 3246–3258.

    Article  Google Scholar 

  31. 31

    Pike, G.E., Ac conductivity of scandium oxide and a new hopping model for conductivity, Phys. Rev. B, 1972, vol. 6, no. 4, pp. 1572–1580.

    CAS  Article  Google Scholar 

  32. 32

    Ngai, K.L., Mundy, J.N., Jain, H., Kanert, O., and Balzer-Jollenbeck, G., Correlation between the activation enthalpy and Kohlrausch exponent for ionic conductivity in alkali aluminogermanate glasses, Phys. Rev. B, 1989, vol. 39, no. 9, pp. 6169–6179.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ahmed E. Hannora.

Ethics declarations

The authors declare to have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Desoky, M.M., Hannora, A.E. Dielectric Relaxation and Impedance Spectroscopy of 30V2O5 · 20Bi2O3 · 50P2O5 Glass. Glass Phys Chem 46, 487–496 (2020). https://doi.org/10.1134/S1087659620060073

Download citation


  • impedance spectroscopy
  • electrical conductivity
  • vanadium–bismuth–phosphate glasses