Review: Diamond Metallization as a Method of Improving the Efficiency of Superhard Materials


This article analyzes the current status of developments in the field of metallization of diamond powders as a method of improving the performance of cutting and drilling tools by increasing the level of diamond retention in the matrix of the superhard material. In recent years attention has been focused on the production of coatings based on carbide-forming metals (Cr, Ti, W, Mo, and others), providing a solid chemical bond of the matrix with the diamond surface. This article presents a physicochemical analysis of the published experimental data on the structure of the diamond–metal transition zone responsible for the level of diamond retention. The experimental results are demonstrated, which indicate a significant (in a number of cases over 50%) improvement in the efficiency of diamond tools upon use of metallized diamonds.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Sergeichev, K.F., Diamond CVD coatings of cutting tools (review), Usp. Prikl. Fiz., 2015, vol. 3, no. 4, pp. 342–376.

    CAS  Google Scholar 

  2. 2

    Polushin, N.I., Maslov, A.L., Laptev, A.I., Kushkhabiev, A.S., Kotel’nikova, O.S., and Varshavskii, Yu.S., Drill bit reinforced with diamond cutting elements, RF Patent No. 2625832, Byull. Izobret., 2017, no. 20.

  3. 3

    Zhao, X.-Ju. and Duan, L.-Ch., A review of the diamond retention capacity of metal bond matrices, Metals, 2018, vol. 8, no. 5, pp. 307–327.

    Article  Google Scholar 

  4. 4

    Olenin, A.Yu. and Lisichkin, G.V., Preparation and use of chemically modified noble metal nanoparticles, Russ. J. Appl. Chem., 2018, vol. 91, no. 9, pp. 1393–1411.

    CAS  Article  Google Scholar 

  5. 5

    Sharin, P.P., Yakovleva, S.P., Makharova, S.N., Vasileva, M.I., and Popov, V.I., Structural and phase characteristics of the diamond/matrix interfacial zone in high-resistant diamond composites, Compos. Interfaces, 2018, vol. 25, no. 5, pp. 1–13.

    Article  Google Scholar 

  6. 6

    Sharin, P.P., Akimova, M.P., Yakovleva, S.P., and Popov, V.I., Structure of diamond-matrix interface and durability of diamond tool obtained by diamond metallization with chromium during WC–CO briquette sintering with copper impregnation, Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokryt., 2018, no. 3, pp. 64–75.

  7. 7

    Sharin, P.P., Akimova, M.P., and Popov, V.I., Correlation of the diamond/matrix interphase zone structure with tool efficiency obtained by technology combining diamonds metallization with matrix sintering, Vopr. Materialoved., 2018, no. 2 (94), pp. 111–123.

  8. 8

    Sharin, P.P. and Akimova, M.P., Influence of the diamond-cemented carbide matrix transition zone structure on the specific productivity of ruling tool obtained by diamond metallization during sintering with copper impregnation, Vestn. Perm. Politekh. Univ., Mashinostr., Materialoved., 2018, vol. 20, no. 4, pp. 57–66.

    Google Scholar 

  9. 9

    Loktyushin, V.A. and Gurevich, L.M., Obtaining nanoscale metal coatings on superhard materials by thermal diffusion metallization, Izv. Volgogr. Tekh. Univ., 2009, no. 11 (59), pp. 50–54.

  10. 10

    Garshin, A.P. and Bogdanov, S.P., Refractory core-shell powders for additive production, Mashinostroenie, 2017, vol. 5, no. 2, pp. 44–48.

    Google Scholar 

  11. 11

    Bogdanov, S.P., Preparation of coatings on powders by the iodide transport method, Glass Phys. Chem., 2011, vol. 37, no. 2, pp. 172–178.

    CAS  Article  Google Scholar 

  12. 12

    Bogdanov, S.P., Iodine transport method for preparation coatings on powders, Izv. SPb. Tekhnol. Inst., 2012, no. 16 (42), pp. 24–28.

  13. 13

    Okada, T., Fukuoka, K., Arata, Y., Yonezawa, S., Kiyokawa, H., and Takoshima, M., Tangsten carbide coating on diamond particles in molten mixture of Na2CO3 and NaCl, Diamond Relat. Mater., 2015, vol. 52, pp. 11–17.

    CAS  Article  Google Scholar 

  14. 14

    Zhuk, Yu. and Lakhotkin, Yu., Superabrasive material with a protective adhesive coating and its production method, RF Patent No. 2666390, Byull. Izobret., 2018, no. 25.

  15. 15

    Gu, Q., Peng, J., Xu, L., Srinivasakannan, C., Zhang, L., Xia, Y., Wu, Q., and Xia, H., Preparation of Ti-coated diamond particles by microwave heating, Appl. Surf. Sci., 2016, vol. 390, pp. 909–916.

    CAS  Article  Google Scholar 

  16. 16

    Chang, R., Zang, J., Wang, Y., Yu, Y., Lu, J., and Xu, X., Study of Ti-coated diamond grits prepared by spark plasma coating, Diamond Relat. Mater., 2017, vol. 77, pp. 72–78.

    CAS  Article  Google Scholar 

  17. 17

    Berov, Z.Zh., Manukyants, A.R., Kasumov, Yu.N., and Sozaev, V.A., Phase forming and structural feature twu-layer coating ‘titanium/nichrome’ on artificial polycrystalline diamonds, Fiz.-Khim. Asp. Izuch. Klast., Nanostrukt. Nanomater., 2018, no. 10, pp. 106–114.

  18. 18

    Berov, Z.Zh., Khapachev, B.S., Nartyzhev, R.M., and Berov, A.Z., Analysis of the influence of diamond metallization on the efficiency of using tools, Izv. Kab.-Balk. Univ., 2015, vol. 5, no. 1, pp. 38–41.

    Google Scholar 

  19. 19

    Berov, Z.Zh. and Balkarov, T.S., Improving the reliability of fixing diamonds and their wear resistance in the tool, STIN, 2018, no. 12, pp. 7–13.

  20. 20

    Ma, S., Zhao, N., Shi, C., Liu, E., He, C., He, F., and Ma, L., Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites, Appl. Surf. Sci., 2017, vol. 402, pp. 372–383.

    CAS  Article  Google Scholar 

  21. 21

    Che, Z., Wang, Q., Wang, L., Li, J., Zhang, H., Zhang, Y., Wang, X., Wang, J., and Kim, M., Interfacial structure evolution of Ti-coated diamond particle reinforced al matrix composite produced by gas pressure infiltration, Composites, Part B, 2017, vol. 113, pp. 285–290.

    CAS  Article  Google Scholar 

  22. 22

    Ji, G., Tan, Z., and Lu, Y., Heterogeneous interfacial chemical nature and bonds in a W-coated diamond/Al composite, Mater. Characteriz., 2016, vol. 112, pp. 129–133.

    CAS  Article  Google Scholar 

  23. 23

    Liu, X.Y., Wang, W.G., and Wang, D., Effect of nanometer TiC coated diamond on the structure and thermal conductivity of diamond/Al composites, Mater. Chem. Phys., 2016, vol. 182, pp. 256–262.

    CAS  Article  Google Scholar 

  24. 24

    Kang, Q., He, X., Ren, S., Liu, T., Liu, Q., Wu, M., and Qu, X., Microstructure and thermal properties of copper-diamond composites with tungsten carbide coating on diamond particles, Mater. Characteriz., 2015, vol. 105, pp. 18–23.

    CAS  Article  Google Scholar 

  25. 25

    Zhang, C., Wang, R., Cai, Z., Peng, C., Feng, Y., and Zhang, L., Effect of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing, Surf. Coat. Technol., 2015, vol. 277, pp. 299–307.

    CAS  Article  Google Scholar 

  26. 26

    Zhang, C., Wang, R., Peng, C., Tang, Y., and Cai, Z., Influence of titanium coating on the microstructure and thermal behavior of Dia./Cu composites, Diamond Relat. Mater., 2019, vol. 97.

    Google Scholar 

  27. 27

    Ukhina, A.V., Dudina, D.V., Samoshkin, D.A., Galashov, E.N., Skovorodin, I.N., and Bokhonov, B.B., Effect of the surface modification of synthetic diamond with nickel or tungsten on the properties of copper–diamond composites, Inorg. Mater., 2018, vol. 54, no. 5, pp. 426–433.

    CAS  Article  Google Scholar 

  28. 28

    Applied Diamond.

  29. 29

    Sharin, P.P. and Akimova, M.P., The structure and strength of the interphase zone in the thermochemical interaction of diamond with transition metals, Izv. Samar. NTs RAN, 2018, vol. 20, no. 1, pp. 11–17.

    Google Scholar 

  30. 30

    Sharin, P.P., Yakovleva, S.P., Gogolev, V.E., and Popov, V.I., Structure and strength of transition area from natural diamondto chromium and cobalt carbide-forming metals under high-temperature interaction, Persp. Mater., 2016, no. 7, pp. 47–60.

  31. 31

    Strogaya, G.M., Yudina, T.F., Ershova, T.V., Beilina, N.Yu., and Krivtsov, A.K., Chemical nickel plating of synthetic diamonds, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2014, vol. 57, no. 5, pp. 80–84.

    CAS  Google Scholar 

  32. 32

    Isonkin, A.M. and Bogdanov, R.K., Influence of diamond metallization on the performance of drill bits, Nauk. Pratsi DonNTU, Ser. Prnicho-Geol., 2011, no. 14 (181), pp. 158–163.

  33. 33

    Stulov, Y.V., Dolmatov, V.S., Dubrovskii, A.R., and Kuznetsov, S.A., Coatings by refractory metal carbides: Deposition from molten salts, properties, application, Russ. J. Appl. Chem., 2017, vol. 90, no. 5, pp. 676–683.

    CAS  Article  Google Scholar 

  34. 34

    Kuznetsov, Yu.A., Markov, M.A., Krasikov, A.V., Bystrov, R.Yu., Belyakov, A.N., Bykova, A.D., Makarov, A.M., and Fadin, Yu.A., Formation of wear- and corrosion-resistant ceramic coatings by combined technologies of spraying and micro-arc oxidation, Russ. J. Appl. Chem., 2019, vol. 92, no. 7, pp. 875–882.

    CAS  Article  Google Scholar 

  35. 35

    Sun, Y., Zhang, C., Wu, J., Wu, J., Meng, Q., Liu, B., Gao, K., and He, L., Enhancement of oxidation resistance via titanium boron carbide coatings on diamond particles, Diamond Relat. Mater., 2019, vol. 92, pp. 74–80.

    CAS  Article  Google Scholar 

Download references


This study was supported by the Russian Science Foundation (project no. 20-13-00054).

Author information



Corresponding author

Correspondence to L. P. Efimenko.

Ethics declarations

The authors declare to have no conflict of interest.

Additional information

Translated by I. Moshkin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Efimenko, L.P., Bogdanov, S.P. & Sychev, M.M. Review: Diamond Metallization as a Method of Improving the Efficiency of Superhard Materials. Glass Phys Chem 46, 605–613 (2020).

Download citation


  • diamond
  • metallization
  • carbide-forming metals
  • diamond retention
  • diamond tool