Medium Range Ordering Structure and Silica Glass Transition


After several decades of study, the ordering structure existing in vitreous silica and the nature of silica glass transition remain controversial. This work describes a newly proposed nanoflake model for the medium range structure in vitreous silica and discusses the formation and evolution of the ordering structure in the glass transition process. The results show that there is a cooling rate independent critical temperature Tc corresponding to the formation of the ordering structure. This indicates that silica glass transition is a second-order phase transition.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    Bragg, W.L., Atomic Structure of Minerals, Ithaka: Cornell Univ. Press, 1937, p. 89.

  2. 2

    Anderson, P.W., Through a glass lightly, Science (Washington, DC, U.S.), 1995, vol. 267, p. 1615.

    CAS  Article  Google Scholar 

  3. 3

    Debenedetti, P. G. and Stillinger, F. H., Supercooled liquids and the glass transition, Nature (London, U.K.), 2001, vol. 410, pp. 259–267.

    CAS  Article  Google Scholar 

  4. 4

    McKenna, G.B., Diverging views on glass transition, Nat. Phys., 2008, vol. 4, pp. 673–674.

    CAS  Article  Google Scholar 

  5. 5

    Zanotto, E.D. and Mauro, J.C., The glass state of matter: Its definition and ultimate fate, J. Non-Cryst. Solids, 2017, vol. 471, pp. 490–495.

    CAS  Article  Google Scholar 

  6. 6

    Popov, A.I., What is glass? J. Non-Cryst. Solids, 2018, in press.

  7. 7

    Kalogeras, I.M. and Lobland, H.H., The nature of the glassy state: structure and glass transitions, J. Mater. Educ., 2012, vol. 34, pp. 69–94.

    CAS  Google Scholar 

  8. 8

    Lebedev, A.A., The polymorphism and annealing of glass, Tr. GOI, 1921, vol. 2, pp. 1–20.

    Google Scholar 

  9. 9

    Porai-Koshits, E.A., Golubkov, V.V., Titov, A.P., and Vasilevskaya, T.N., The microstructure of some glasses and melts, J. Non-Cryst. Solids, 1982, vol. 49, pp. 143–156.

    CAS  Article  Google Scholar 

  10. 10

    Porai-Koshits, E.A., Genesis of concepts on structure of inorganic glasses, J. Non-Cryst. Solids, 1990, vol. 123, pp. 1–13.

    CAS  Article  Google Scholar 

  11. 11

    Zachariasen, W.H., The atomic arrangement in glass, J. Am. Chem. Soc., 1932, vol. 54, pp. 3841–3851.

    CAS  Article  Google Scholar 

  12. 12

    Warren, B.E., X-ray determination of the structure of glass, J. Am. Ceram. Soc., 1934, vol. 17, pp. 249–254.

    CAS  Article  Google Scholar 

  13. 13

    Warren, B.E. and Biscoe, J., The structure of silica glass by X-ray diffraction studies, J. Am. Ceram. Soc., 1938, vol. 21, pp. 49–54.

    CAS  Article  Google Scholar 

  14. 14

    Krivanek, O.L., Gaskell, P.H., and Howie, A., Seeing order in amorphous materials, Nature (London, U.K.), 1976, vol. 262, pp. 454–457.

    CAS  Article  Google Scholar 

  15. 15

    Cheng, S., A nanoflake model for the medium range structure in vitreous silica, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 2017, vol. 58, no. 2, pp. 33–40.

    Google Scholar 

  16. 16

    Wright, A.C., The great crystallite versus random network controversy: a personal perspective, Int. J. Appl. Glass Sci., 2014, vol. 5, no. 1, pp. 31–56.

    Article  Google Scholar 

  17. 17

    Wright, A.C., The Cheng nanoflake model for the structure of vitreous silica: A critical appraisal, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 2017, vol. 58, no. 5, pp. 226–228.

    Google Scholar 

  18. 18

    Cheng, S., Comments on “The Cheng nanoflake model for the structure of vitreous silica: a critical appraisal,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 2018, vol. 59, no. 2, pp. 114–117.

    Google Scholar 

  19. 19

  20. 20

    Huang, P.Y., Kurasch, S., Srivastava, A., Skakalova, V., Kotakoski, J., Krasheninnikov, A.V., Hovden, R., Mao, Q., Meyer, J.C., Smet, J., Muller, D.A., and Kaiser, U., Direct imaging of two-dimensional silica glass on graphene, Nano Lett., 2012, vol. 12, pp. 1081–1086.

    CAS  Article  Google Scholar 

  21. 21

    Hlavac, J., The Technology of Glass and Ceramics: An Introduction, Amsterdam: Elsevier Sci., 1983, p. 12.

    Google Scholar 

  22. 22

    Brazhkin, V.V., Lyapin, A.G., Popova, S.V. and Voloshin, R.N., New types of phase transitions: Phenomenology, concepts and terminology, in New Kinds of Phase Transitions: Transformations in Disordered Substances, Brazhkin, V.V., Buldyrev, S.V., Ryzhov, V.N. and Stanley, H.E., Eds., NATO ASI, Ser. II, Dordrecht: Kluwer Academic, 2002, vol. 81, pp. 15–27.

  23. 23

    Schmelzer, W.P. and Gutzow I.S., Glasses and the Glass Transition, 1st ed., Weinheim: Wiley-VCH, 2011, p. 64.

    Google Scholar 

  24. 24

    Kittel, C., Introduction to Solid State Physics, 5th ed., New York: Wiley, 1976.

    Google Scholar 

  25. 25

    Skinner, L.B., Benmore, C.J., Weber, J.K.R., Wilding, M.C., Tumber, S.K., and Parise, J.B., A time resolved high energy X-ray diffraction study of cooling liquid SiO2, Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 8566–8572.

    CAS  Article  Google Scholar 

  26. 26

    Wright, A.C., Longer range order in single component network glasses? Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 2008, vol. 49, no. 3, pp. 103–107.

    CAS  Google Scholar 

  27. 27

    Elliott, S.R., Origin of the first sharp diffraction peak in the structure factor of covalent glasses, Phys. Rev. Lett., 1991, vol. 67, pp. 711–714.

    CAS  Article  Google Scholar 

  28. 28

    Gaskell, P.H., Medium-range structure in glasses and low-Q structure in neutron and X-ray scattering data, J. Non-Cryst. Solids, 2005, vol. 351, pp. 1003–1013.

    CAS  Article  Google Scholar 

  29. 29

    Forter, C.N. and Shockley, W., Order-disorder transitions in alloys, Rev. Mod. Phys., 1938, vol. 10, pp. 1–60.

    Article  Google Scholar 

  30. 30

    Champagnon, B., Martinez, V., and Martinet, C., le Parc, R., and Levelut, C., Density and density fluctuations of SiO2 glass: Comparison and light-scattering study, Philos. Mag., 2007, vol. 87, pp. 691–695.

    CAS  Article  Google Scholar 

  31. 31

    Cheng, C., Schiefelbein, S., Moore, L.L., Pierson-Stull, M., Sen, S., and Smith, C., Use of EELS to study the absorption edge of fused silica, J. Non-Cryst. Solids, 2006, vol. 352, pp. 3140–3146.

    CAS  Article  Google Scholar 

  32. 32

    Cheng, C., The measurements of frozen-in disorder and thermal disorder of fused silica by EELS, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 2009, vol. 50, no. 5, pp. 329–331.

    CAS  Google Scholar 

  33. 33

    Bruckner, R., Properties and structure of vitreous silica I, J. Non-Cryst. Solids, 1970, vol. 5, pp. 123–175.

    Article  Google Scholar 

  34. 34

    Shelby, J.E., Density of vitreous silica, J. Non-Cryst. Solids, 2004, vol. 349, pp. 331–336.

    CAS  Article  Google Scholar 

  35. 35

    Sen, S., Andrus, R.L., Baker, D.E., and Murtagh, M.T., Observation of an anomalous density minimum in vitreous silica, Phys. Rev. Lett., 2004, vol. 93, p. 125902.

    Article  Google Scholar 

Download references


This work was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract no. DE-AC02-05CH11231.

Author information



Corresponding author

Correspondence to Shangcong Cheng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shangcong Cheng Medium Range Ordering Structure and Silica Glass Transition. Glass Phys Chem 45, 91–97 (2019).

Download citation


  • vitreous silica
  • medium range ordering structure
  • silica glass transition
  • second-order phase transition
  • critical temperature