The Influence of the Bismuth Concentration and Heat Treatment on the Properties of Bismuth-Containing High-Silica Glass: II. Luminescence Properties


The luminescence properties of bismuth-containing high-silica glass obtained after impregnating matrices of porous glass in nitrate solutions of bismuth nitrate pentahydrate for 24–48 h followed by heat treatment in the range from 400 to 890°C are studied. It is found that the concentration of Bi(NO3)3 in the impregnating solution affects the content of bismuth in the synthesized samples stronger than the duration of the impregnation and the temperature of the heat treatment. It is established that all the samples studied in this work have blue-green luminescence (λem = 420–520 nm at λexc = 300 nm) caused by the presence of Bi3+ ions. When the concentration of bismuth in the samples is increased a long-wavelength shift of the luminescence band maximum is observed. When the heat treatment temperature is increased a shortwave shift is observed. A yellow-orange luminescence with the maximum in the λem range of 576–582 nm (λexc = 480 nm) caused by the presence of Bi2+ ions is observed for the samples with a high bismuth content (1.17–1.18 wt % of Bi2O3) heat-treated in air at ~700 and 750°C.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.


  1. 1

    Dianov, E.M., Novel optical materials: basic research results, Herald Russ. Acad. Sci., 2009, vol. 79, no. 6, pp. 533–540.

    Article  Google Scholar 

  2. 2

    Girsova, M.A., Synthesis, structure and spectral-optical properties of composite materials based on silicate porous glasses containing silver halides or bismuth oxides, Cand. Sci. (Chem.) Dissertation, St. Petersburg, 2015.

  3. 3

    Antropova, T.V., Inorganic functional glass-forming materials based on alkaline borosilicate systems, in IKhS RAN-80 let. Sovremennye problemy neorganicheskoi khimii (80 years of ISCh RAS. Modern Problems of Inorganic Chemistry), Shevchenko, V.Ya., Ed., St. Petersburg: Art-Ekspress, 2016, pp. 117–137.

  4. 4

    Zhou, S., Lei, W., Jiang, N., Hao, J., Wu, E., Zeng, H., and Qiu, J., Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser, J. Mater. Chem., 2009, vol. 19, pp. 4603–4608.

    CAS  Article  Google Scholar 

  5. 5

    Girsova, M.A., Firstov, S.V., Anfimova, I.N., Golovina, G.F., Kurilenko, L.N., Kostyreva, T.G., Polyakova, I.G., and Antropova, T.V., High-silica bismuth doped glass, Fiz. Khim.Stekla, 2012, vol. 38, no. 6, pp. 861–863.

    Google Scholar 

  6. 6

    Firstov, S.V., Girsova, M.A., Dianov, E.M., and Antropova, T.V., Luminescent properties of thermoinduced active centers in quartz-like glass activated by bismuth, Glass Phys. Chem., 2014, vol. 40, no. 5, pp. 521–525.

    CAS  Article  Google Scholar 

  7. 7

    Antropova, T.V., Girsova, M.A., Anfimova, I.N., Golovina, G.F., Kurilenko, L.N., and Firstov S.V., Production method of luminescent bismuth-containing quartz-like material based on high-silica porous glass, RU Patent no. 2605711.

  8. 8

    Girsova, M.A., Golovina, G.F., Anfimova, I.N., and Kurilenko, L.N., Properties of bismuth-containing high-silica glass depending on the bismuth concentration and heat treatment. I. Spectral-Optical properties, Glass Phys. Chem., 2018, vol. 44, no. 5, pp. 381–387.

  9. 9

    Girsova, M.A., Firstov, S.V., and Antropova, T.V., Structural and optical properties of the bismuth-containing quartz-like glasses, J. Phys.: Conf. Ser., 2014, vol. 541, p. 012022.

    Article  Google Scholar 

  10. 10

    Xu, B., Zhou, S., Tan, D., Hong, Z., Hao, J., and Qiu, J., Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germinate glasses, J. Appl. Phys., 2013, vol. 113, no. 8, p. 083503.

    CAS  Article  Google Scholar 

  11. 11

    Denker, B.I., Galagan, B.I., Shulman, I.L., Sverchkov, S.E., and Dianov, E.M., Bismuth valence states and emission centers in Mg-Al-silicate glass, Appl. Phys. B, 2011, vol. 103, no. 3, pp. 681–685.

    CAS  Article  Google Scholar 

  12. 12

    Fujimoto, Y., Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass, J. Am. Ceram. Soc., 2010, vol. 93, no. 2, pp. 581–589.

    CAS  Article  Google Scholar 

  13. 13

    Wan, R., Song, Z., Li, Y., Zhou, Y., Liu, Q., Qiu, J., Yang, Z., and Yin, Z., Investigation on the near-infrared-emitting thermal stability of Bi activated alkaline-earth aluminoborosilicate glasses, J. Appl. Phys., 2015, vol. 117, no. 5, p. 053107.

    CAS  Article  Google Scholar 

  14. 14

    Truong, V.G., Bigot, L., Lerouge, A., Douay, M., and Razdobreev, I., Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications, Appl. Phys. Lett., 2008, vol. 92, no. 4, p. 041908.

    CAS  Article  Google Scholar 

  15. 15

    Nielsen, K.H., Smedskjaer, M.M., Peng, M., Yue, Y., and Wondraczek, L., Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses, J. Non-Cryst. Solids, 2012, vol. 358, no. 23, pp. 3193–3199.

    CAS  Article  Google Scholar 

  16. 16

    Ren, J., Dong, G., Xu, S., Bao, R., and Qiu, J., Inhomogeneous broadening, luminescence origin and optical amplification in bismuth doped glass, J. Phys. Chem. A, 2008, vol. 112, no. 14, pp. 3036–3039.

    CAS  Article  Google Scholar 

  17. 17

    Razdobreev, I., El Hamzaoui, H., Arion, V.B., and Bouazaoui, M., Photoluminescence in Ga/Bi co-doped silica glass, Opt. Express, 2014, vol. 22, no. 5.

  18. 18

    Laguta, O.V., El Hamzaoui, H., Bouazaoui, M., Arion, V.B., and Razdobreev, I.M., Sci. Rep., 2017, no. 7, p. 317.

  19. 19

    Fan, X., Su, L., Ren, G., Jiang, X., Xing, H., Hu, J., Tang, H., Li, H., Zheng, L., Qian, X., and Feng, H., Influence of thermal treatment on the near-infrared broadband luminescence of Bi:CsI crystals, Opt. Mater. Express, 2013, vol. 3, no. 3, pp. 400–406.

    CAS  Article  Google Scholar 

  20. 20

    Hashimoto, T., Shimoda, Y., Nasu, H., and Ishihara, A., ZnO–Bi2O3–B2O3 glasses as molding glasses with high refractive indices and low coloration codes, J. Am. Ceram. Soc., 2011, vol. 94, no. 7, pp. 2061–2066.

    CAS  Article  Google Scholar 

  21. 21

    Antropova, T., Girsova, M., Anfimova, I., Drozdova, I., Polyakova, I., and Vedishcheva, N., Structure and spectral properties of the photochromic quartz-like glasses activated by silver halides, J. Non-Cryst. Solids, 2014, vol. 401, pp. 139–141.

    CAS  Article  Google Scholar 

  22. 22

    Sokolov, V.O. and Sulimov, V.B., Theory of twofold coordinated silicon and germanium atoms in solid silicon dioxide, Phys. Status Solidi B, 1994, vol. 186, no. 3, pp. 185–198.

    CAS  Article  Google Scholar 

  23. 23

    Gaft, M., Reisfeld, R., Panczer, G., Boulon, G., Saraidarov, T., and Erlish, S., The luminescence of Bi, Ag and Cu in natural and synthetic barite BaSO4, Opt. Mater., 2001, vol. 16, nos. 1–2, pp. 279–290.

    CAS  Article  Google Scholar 

  24. 24

    Gui, S.C.R., Imakita, K., Fujii, M., Bai, Z., and Hayashi, S., Near infrared photoluminescence from bismuth-doped nanoporous silica thin films, J. Appl. Phys., 2013, vol. 114, no. 3, p. 033524.

    CAS  Article  Google Scholar 

  25. 25

    Cao, R., Zhang, F., Liao, C., and Qiu, J., Yellow-to-orange emission from Bi2+-doped RF2 (R = Ca and Sr) phosphors, Opt. Express, 2013, vol. 21, no. 13, pp. 15728–15733.

    CAS  Article  Google Scholar 

  26. 26

    Blasse, G., Meijerink, A., Nomes, M., and Zuidema, J., Unusual bismuth luminescence in strontium tetraborate (SrB4O7:Bi), J. Phys. Chem. Solids, 1994, vol. 55, no. 2, pp. 171–174.

    CAS  Article  Google Scholar 

  27. 27

    De Jong, M. and Meijerink, A., Color tuning of Bi2+ luminescence in barium borates, J. Lumin., 2016, vol. 170, pp. 240–247.

    CAS  Article  Google Scholar 

  28. 28

    Peng, M., Lei, J., Li, L., Wondraczek, L., Zhang, Q., and Qiu, J., Site-specific reduction of Bi3+ to Bi2+ in bismuth-doped over-stoichiometric barium phosphates, J. Mater. Chem., 2013, vol. 1, no. 34, pp. 5303–5308.

    CAS  Article  Google Scholar 

  29. 29

    Veber, A.A., On the nature of luminescent centers in bismuth-doped materials, Cand. Sci. (Phys. Math.) Dissertation, Moscow, 2012.

  30. 30

    Filippovskii, D.V., Spectroscopic properties of bismuth-doped chalcogenide glasses and the simplest halide crystals, Cand. Sci. (Phys. Math.) Dissertation, Moscow, 2014.

  31. 31

    Gladskikh, I.A., Gladskikh, P.V., and Vartanyan, T.A., Absorption and photoluminescence properties of silver clusters in SiO2 matrix, Opt. Quantum Electron., 2017, vol. 49, no. 1, p. 41.

    CAS  Article  Google Scholar 

  32. 32

    Bulatov, L.I., Mashinskii, V.M., Dvoirin, V.V., Kustov, E.F., and Dianov, E.M., Luminescent properties of bismuth centres in aluminosilicate optical fibres, Quantum Electron., 2010, vol. 40, no. 2, pp. 153–159.

    CAS  Article  Google Scholar 

  33. 33

    Hamstra, M.A., Folkerts, H.F., and Blasse, G., Red bismuth emission in alkaline-earth-metal sulfates, J. Mater. Chem., 1994, vol. 4, no. 8, pp. 1349–1350.

    CAS  Article  Google Scholar 

Download references


The work was supported by the Russian Foundation of Basic Research, project no. 18-03-01206. The samples were prepared within the scope of the state assignment on the Program of Fundamental Research of State Academies of Sciences in 2013–2020, topic no. 0097-2015-0021.

Author information



Corresponding author

Correspondence to M. A. Girsova.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Girsova, M.A., Firstov, S.V. & Antropova, T.V. The Influence of the Bismuth Concentration and Heat Treatment on the Properties of Bismuth-Containing High-Silica Glass: II. Luminescence Properties. Glass Phys Chem 45, 98–103 (2019).

Download citation


  • bismuth-containing high-silica glass
  • luminescence