Skip to main content
Log in

Sol-Gel Synthesis, Thermal Behavior of Nanopowders and Chemical Stability of La1 – xHoxPO4 Ceramic Matrices

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Nanosized powders of orthophosphates in the LaPO4–HoPO4–H2O system have been synthesized to determine the mutual solubility of LaPO4 · nH2O and HoPO4 · nH2O initial components and to obtain ceramic matrices by sintering them. Formation of hexagonal, monoclinic or tetragonal solid solutions was revealed, and their limits and thermal stability were determined. A series of limited hexagonal LaPO4 · nH2O-based solid solutions was observed within the 0 ≤ x ≤ 0.6 concentration range up to 600°C. Further they transformed to monoclinic LaPO4-based form within the 0 ≤ x ≤ 0.3 concentration range. Solubility of LaPO4 · nH2O and LaPO4 in tetragonal HoPO4nH2O) is lower (≤10 mol %). Specific surface area of La1–xHoxPO4 · nH2O powders was in the range of 90.5–165.0 m2/g depending on x. Leaching rate of La3+ and Ho3+ from La1–xHoxPO4 matrices in nitric acid solution (pH 1–2) was determined to be 10–5–10–2 g/(cm2 day) for both ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Picot, V., Deschanels, X., Peuget, S., Glorieux, B., Seydoux-Guillaume, A.M., and Wirth, R., Ion beam radiation effects in monazite, J. Nucl. Mater., 2008, vol. 381, no. 3, pp. 290–296.

    Article  Google Scholar 

  2. Schlenz, H., Heuser, J., Neumann, A., Schmitz, S., and Bosbach, D., Monazite as a suitable actinide waste form, Z. Kristallogr., 2013, vol. 228, no. 3, pp. 113–123.

    Article  Google Scholar 

  3. Mezentseva, L.P., Osipov, A.V., Akatov, A.A., Doil’nitsin, V.A., Ugolkov, V.L., Popova, V.F., Maslennikova, T.P., and Drozdova, I.A., Chemical and thermal stability of phosphate ceramic matrices, Glass Phys. Chem., 2017, vol. 43, no. 1, pp. 83–90.

    Article  Google Scholar 

  4. Ugolkov, V.L., Mezentseva, L.P., Osipov, A.V., Popova, V.F., Maslennikova, T.P., Akatov, A.A., and Doil’nitsyn, V.A., Synthesis of nanopowders and physicochemical properties of ceramic matrices of the LaPO4–YPO4–(H2O) and LaPO4–HoPO4–(H2O) systems, Russ. J. Appl. Chem., 2017, vol. 90, no. 1, pp. 28–33.

    Article  Google Scholar 

  5. ICDD-PDF No. 46–1439 (LaPO4 · 0.5H2O); ICDDPDF No.35-731 (LaPO4); ICDD-PDF No. 20–476 (HoPO4 · 3H2O); ICDD-PDF No. 26–746 (HoPO4).

  6. Zheng, Q., Wang, X., Tian, J., Kang, R., and Yin, Y., Synthesis and characterization of LaPO4 powder heat treated at various temperatures, Mater. Chem. Phys., 2010, vol. 122, no. 1, pp. 49–52.

    Article  Google Scholar 

  7. Mezentseva, L., Osipov, A., Ugolkov, V., Kruchinina, I., Popova, V., Yakovlev, A., and Maslennikova, T., Solid solutions and thermal transformations in the nanosized LaPO4–YPO4–H2O and LaPO4–LuPO4–H2O systems, J. Ceram. Sci. Tech., 2014, vol. 5, no. 3, pp. 237–244.

    Google Scholar 

  8. Mezentseva, L.P., Kruchinina, I.Yu., Osipov, A.V., Ugolkov, V.L., Popova, V.F., and Kuchaeva, S.K., Physical-chemical properties of nanopowders and ceramic samples of REE orthophosphates, Glass Phys. Chem., 2017, vol. 43, no. 1, pp. 98–105.

    Article  Google Scholar 

  9. Anfimova, T., Li, Q., Jensen, J.O., and Bjerrum, N.J., Thermal stability and proton conductivity of rare earth orthophosphate hydrates, Int. J. Electrochem. Sci., 2014, vol. 9, no. 5, pp. 2285–2300.

    Google Scholar 

  10. Mezentseva, L.P., Kruchinina, I.Yu., Osipov, A.V., Ugolkov, V.L., Popova, V.F., and Lapenok, A.Yu., The influence of the particularities of synthesis on the physicochemical properties of nanosized powders and ceramic samples of REE orthophosphates, Glass Phys. Chem., 2015, vol. 41, no. 6, pp. 668–671.

    Article  Google Scholar 

  11. Wang, R., Pan, W., Chen, J., Fang, M., Cao, Z., and Luo, Y., Synthesis and sintering of LaPO4 powder and its application, Mater. Chem. Phys., 2003, vol. 79, no. 1, pp. 30–36.

    Article  Google Scholar 

  12. Hay, R.S., Boakye, E.E., and Mogilevsky, P., Transformation plasticity in TbPO4 and (Gd,Dy)PO4 orthophosphates during indentation of polycrystalline specimens, J. Eur. Ceram. Soc., 2014, vol. 34, no. 3, pp. 773–781.

    Article  Google Scholar 

  13. Min, W., Miyahara, D., Yokoi, K., Yamaguchi, T., Daimon, K., Hikichi, Y., Matsubara, T., and Ota, T., Thermal and mechanical properties of sintered LaPO4–Al2O3 composites, Mater. Res. Bull., 2001, vol. 36, nos. 5–6, pp. 939–945.

    Article  Google Scholar 

  14. Wang, R., Pan, W., Chen, J., Jiang, M., Luo, Y., and Fang, M., Properties and microstructure of machinable Al2O3/LaPO4 ceramic composites, Ceram. Int., 2003, vol. 29, no. 1, pp. 19–25.

    Article  Google Scholar 

  15. Kuo, D.H. and Kriven, W.M., Characterization of yttrium phosphate and yttrium phosphate/yttrium aluminate laminate, J. Am. Ceram. Soc., 1995, vol. 78, no. 11, pp. 3121–3124.

    Article  Google Scholar 

  16. Glorieux, B., Matecki, M., Fayon, F., Coutures, J.P., Palau, S., Douy, A., and Peraudeau, G., Study of lanthanum orthophosphates polymorphism, in view of actinide conditioning, J. Nucl. Mater., 2004, vol. 326, nos. 2–3, pp. 156–162.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Mezentseva.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezentseva, L.P., Osipov, A.V., Ugolkov, V.L. et al. Sol-Gel Synthesis, Thermal Behavior of Nanopowders and Chemical Stability of La1 – xHoxPO4 Ceramic Matrices. Glass Phys Chem 44, 440–449 (2018). https://doi.org/10.1134/S1087659618050127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659618050127

Keywords

Navigation