Skip to main content
Log in

Study of the Chemical Bond in Li2 – yFe1 – xMnxSiO4 (x = 0.0, 0.5, 1.0; y = 0.0, 2.0) by the Method of Computer Simulation

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The electron structure of Li2MnSiO4 and Li2FeSiO4 in a layered orthorhombic crystal structure of Pmn21 is studied by the electron density functional method. Using the analysis of the density of crystal orbital Hamilton populations (COHPs), the features of chemical bond formation in these substances are studied. Anisotropy of the chemical bond of Mn with oxygen atoms is observed for Li2MnSiO4 with the complete extraction of lithium atoms from the structure. The formation of anisotropy of the chemical bond can indicate that Mn is trying to change the coordination and the beginning of the restructuring of the compound structure and its reduced stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andre, D., Kim, S.-J., Lamp, P., Lux, S.F., Maglia, F., Paschos, O., and Stiaszny, B., Future generations of cathode materials: An automotive industry perspective, J. Mater. Chem. A, 2015, vol. 3, pp. 6709–6732.

    Article  Google Scholar 

  2. Dronskowski, R. and Blöchl, P.E., Crystal orbital hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on densityfunctional calculations, J. Phys. Chem., 1993, vol. 97, pp. 8617–8624.

    Article  Google Scholar 

  3. Larsson, P., Ahuja, R., Liivat, A., and Thomas, J.O., Structural and electrochemical aspects of Mn substitution into Li2FeSiO4 from DFT calculations, Comput. Mater. Sci., 2010, vol. 47, pp. 678–684.

    Article  Google Scholar 

  4. Wang, W., Zhang, Y., Shen, C., and Chai, Y., Adsorption of CO molecules on doped graphene: A first-principles study, AIP Adv., 2016, vol. 6, p. 25317.

    Article  Google Scholar 

  5. Arsent’ev, M.Yu., Kalinina, M.V., Tikhonov, P.A., Morozova, L.V., Kovalenko, A.S., Koval’ko, N.Yu., Khlamov, I.I., and Shilova, O.A., Synthesis and study of sensor oxide nanofilms in a ZrO2–CeO2 system, Glass Phys. Chem., 2014, vol. 40, no. 3, pp. 362–366.

    Article  Google Scholar 

  6. Shapovalov, V.I., Lapshin, A.E., Komlev, A.E., Arsent’ev, M.Yu., and Komlev, A.A., Crystallization and thermochromism of annealed heterostructures containing titanium and tungsten oxide films, Tech. Phys., 2013, vol. 58, no. 9, pp. 1313–1322.

    Article  Google Scholar 

  7. Mousavi-Khoshdel, M., Targholi, E., and Momeni, M.J., First-principles calculation of quantum capacitance of codoped graphenes as supercapacitor electrodes, J. Phys. Chem. C, 2015, vol. 119, pp. 26290–26295.

    Article  Google Scholar 

  8. Shilova, O.A., Antipov, V.N., Tikhonov, P.A., Kruchinina, I.Yu., Arsent’ev, M.Yu., Panova, T.I., Morozova, L.V., Moskovskaya, V.V., Kalinina, M.V., and Tsvetkova, I.N., Ceramic nanocomposites based on oxides of transition metals for ionistors, Glass Phys. Chem., 2013, vol. 39, no. 5, pp. 570–578.

    Article  Google Scholar 

  9. Arsent’ev, M.Y., Tikhonov, P.A., Kalinina, M.V., Tsvetkova, I.N., and Shilova, O.A., Synthesis and physicochemical properties of electrode and electrolyte nanocomposites for supercapacitors, Fiz. Khim. Stekla, 2012, vol. 38, no. 5, pp. 653–664.

    Google Scholar 

  10. Moshnikov, V.A., Gracheva, I.E., Kuznezov, V.V., Maximov, A.I., Karpova, S.S., and Ponomareva, A.A., Hierarchical nanostructured semiconductor porous materials for gas sensors, J. Non. Cryst. Solids, 2010, vol. 356, pp. 2020–2025.

    Article  Google Scholar 

  11. Lenshin, A.S., Kashkarov, V.M., Seredin, P.V., Spivak, Y.M., and Moshnikov, V.A., XANES and IR spectroscopy study of the electronic structure and chemical composition of porous silicon on n-and p-type substrates, Semiconductors, 2011, vol. 45, pp. 1183–1188.

    Article  Google Scholar 

  12. Moshnikov, V.A., Gracheva, I.E., and An’chkov, M.G., Investigation of sol–gel derived nanomaterials with a hierarchical structure, Glass Phys. Chem., 2011, vol. 37, no. 5, pp. 485–495.

    Article  Google Scholar 

  13. Kalinina, M.V., Moshnikov, V.A., Tikhonov, P.A., Tomaev, V.V., and Drozdova, I.A., Electron microscopic investigation of the structure of gas-sensitive nanocomposites prepared by the hydropyrolytic method, Glass Phys. Chem., 2003, vol. 29, no. 3, pp. 322–327.

    Article  Google Scholar 

  14. Kalinina, M.V., Moshnikov, V.A., Tikhonov, P.A., Tomaev, V.V, and Mikhailichenko, S.V., Temperature dependence of the resistivity for metal-oxide semiconductors based on tin dioxide, Glass Phys. Chem., 2003, vol. 29, no. 4, pp. 422–427.

    Article  Google Scholar 

  15. Shevchenko, V.Ya., Institute of Sicilate Chemistry of RAS. Studies in the field of nanoworld and nanotechnology, Ross. Nanotekhnol., 2008, vol. 3, nos. 11–12, pp. 36–45.

    Google Scholar 

  16. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865–3868.

    Article  Google Scholar 

  17. Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P., and Sanchez-Portal, D., The SIESTA method for ab initio order-N materials simulation, J. Phys. Chem., 1993, vol. 97, pp. 8617–8624.

    Article  Google Scholar 

  18. Pack, J.D. and Monkhorst, H.J., Special points for brillouin zone integrations, Phys. Rev. B, 1977, vol. 16, pp. 1748–1749.

    Article  Google Scholar 

  19. Kokalj, A., Dominko, R., Mali, G., Meden, A., Gaberscek, M., and Jamnik, J., Beyond one-electron reaction in Li cathode materials: Designing Li2MnxFe1–xSiO4, Chem. Mater., 2007, vol. 19, pp. 3633–3640.

    Article  Google Scholar 

  20. Lee, H., Park, S.D., Moon, J., Lee, H., Cho, K., Cho, M., and Kim, S.Y., Origin of poor cyclability in Li2MnSiO4 from first-principles calculations: Layer exfoliation and unstable cycled structure, Chem. Mater., 2014, vol. 26, pp. 3896–3899.

    Article  Google Scholar 

  21. Li, L., Zhu, L., Xu, L.-H., Cheng, T.-M., Wang, W., Li, X., and Sui, Q.-T., Site-exchange of Li and M ions in silicate cathode materials Li2MSiO4 (M = Mn, Fe, Co and Ni): DFT calculations, J. Mater. Chem. A, 2014, vol. 2, pp. 4251–4255.

    Article  Google Scholar 

  22. Arroyo de Dompablo, M.E., Armand, M., Tarascon, J.M., and Amador, U., On-demand design of polyoxianionic cathode materials based on electronegativity correlations: an exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni), Electrochem. Commun., 2006, vol. 8, pp. 1292–1298.

    Article  Google Scholar 

  23. Chen, Q., Xiao, P., Pei, Y., Song, Y., Xu, C.-Y., Zhen, L., and Henkelman, G., Structural transformations in Li2MnSiO4: Evidence that a Li intercalation material can reversibly cycle through a disordered phase, J. Mater. Chem. A, 2017, vol. 5, pp. 16722–16731.

    Article  Google Scholar 

  24. Arsentev, M., Hammouri, M., Kovalko, N., and Kalinina, M., First principles study of the electrochemical properties of Mg-substituted Li2MnSiO4, Comput. Mater. Sci., 2017, vol. 140, pp. 181–188.

    Article  Google Scholar 

  25. Gong, Z.L., Li, Y.X., and Yang, Y., Synthesis and characterization of Li2MnxFe1–xSiO4 as a cathode material for lithium-ion batteries, Electrochem. Solid State, 2006, vol. 9, pp. A542–A544.

    Article  Google Scholar 

  26. Chung, Y., Yu, S., Song, M.S., Kim, S.-S., and Cho, W.I., Structural and electrochemical properties of Li2Mn0.5Fe0.5SiO4/C cathode nanocomposite, Bull. Korean Chem. Soc., 2011, vol. 32, pp. 4205–4209.

    Article  Google Scholar 

  27. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., A, 1976, vol. 32, pp. 751–767.

    Article  Google Scholar 

  28. Zhu, L., Li, L., Cheng, T., and Xu, D., First principles study of the elastic properties of Li2MnSiO4–ySy, J. Mater. Chem. A, 2015, vol. 3, pp. 5449–5456.

    Article  Google Scholar 

  29. Brese, N.E. and O’Keeffe, M., Bond valence parameters for solids, Acta Crystallogr., B, 1991, vol. 47, pp. 192–197.

    Article  Google Scholar 

  30. Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K.A., Commentary: the materials project: a materials genome approach to accelerating materials innovation, APL Mater., 2013, vol. 1, p. 11002.

    Article  Google Scholar 

  31. Zhong, G., Li, Y., Yan, P., Liu, Z., Xie, M., and Lin, H., Structural, electronic, and electrochemical properties of cathode materials Li2MSiO4 (M = Mn, Fe, and Co): Density functional calculations, J. Phys. Chem. C, 2010, vol. 114, pp. 3693–3700.

    Article  Google Scholar 

  32. Wu, S.Q., Zhu, Z.Z., Yang, Y., and Hou, Z.F., Structural stabilities, electronic structures and lithium deintercalation in LixMSiO4 (M = Mn, Fe, Co, Ni): A GGA and GGA + U study, Comput. Mater. Sci., 2009, vol. 44, pp. 1243–1251.

    Article  Google Scholar 

  33. Wu, P., Wu, S.Q., Lv, X., Zhao, X., Ye, Z., Lin, Z., Wang, C.Z., and Ho, K.M., Fe-Si networks in Na2Fe-SiO4 cathode materials, Phys. Chem. Chem. Phys., 2016, vol. 18, pp. 23916–23922.

    Article  Google Scholar 

  34. Grinyaev, S.N., Anisotropy of the chemical bond and electronic structure in graphite-like and rhombohedral boron nitride, Zh. Strukt. Khim., 1997, vol. 38, no. 1, pp. 32–41.

    Google Scholar 

  35. Okotrub, A.V., Yudanov, N.F., Asanov, I.P., Vyalikh, D.V., and Bulusheva, L.G., Anisotropy of chemical bonding in semifluorinated graphite C2F revealed with angleresolved X-ray absorption spectroscopy, ACS Nano, 2013, vol. 7, pp. 65–74.

    Article  Google Scholar 

  36. Belharouak, I., Abouimrane, A., and Amine, K., Structural and electrochemical characterization of Li2MnSiO4 cathode material, J. Phys. Chem. C, 2009, vol. 113, pp. 20733–20737.

    Article  Google Scholar 

  37. Kuganathan, N. and Islam, M.S., Li2MnSiO4 lithium battery material: Atomic-scale study of defects, lithium mobility, and trivalent dopants, Chem. Mater., 2009, vol. 21, pp. 5196–5202.

    Article  Google Scholar 

  38. Momma, K. and Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–1276.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Tikhonov.

Additional information

Original Russian Text © M.Yu. Arsent’ev, P.A. Tikhonov, M.V. Kalinina, 2018, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsent’ev, M.Y., Tikhonov, P.A. & Kalinina, M.V. Study of the Chemical Bond in Li2 – yFe1 – xMnxSiO4 (x = 0.0, 0.5, 1.0; y = 0.0, 2.0) by the Method of Computer Simulation. Glass Phys Chem 44, 455–463 (2018). https://doi.org/10.1134/S1087659618050024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659618050024

Keywords

Navigation