Glass Physics and Chemistry

, Volume 44, Issue 2, pp 100–107 | Cite as

Synthesis and Thermoelectric Properties of Ceramics Based on Bi2Ca2Co1.7O y Oxide

  • A. I. Klyndyuk
  • N. S. Krasutskaya
  • E. A. Chizhova


Layered ceramics based on bismuth–calcium cobaltite with varied cobalt oxide contents is synthesized by the solid-phase method, the ceramics phase composition is determined, and the microstructure, thermal expansion, electroconductivity, and thermal electromotive force are investigated. The formation of just one compound, ternary oxide composed of Bi2Ca2Co1.7O y , is established within the quasi-binary Bi2Ca2O5–CoO z system. The effect of the cobalt oxide content on the Bi2Ca2Co x O y ceramics’ microstructure and physicochemical properties is analyzed. The single-phased ceramic sample Bi2Ca2Co1.7O y demonstrated the highest power factor value among all the investigated samples—26.0 μW/(m K2) at a temperature of 300 K. This sample showed the lowest value of the thermal linear expansion coefficient of 9.72 × 10–6 K–1.


layered bismuth–calcium cobaltite oxide thermoelectric materials thermal expansion electroconductivity thermal electromotive force power factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koumoto, K., Terasaki, I., and Murayama, N., Oxide Thermoelectrics, Trivandrum, India: Research Signpost, 2002.Google Scholar
  2. 2.
    Terasaki, I., Sasago, Y., and Uchinokura, K., Large thermoelectric power in NaCo2O4 single crystals, Phys. Rev. B, 1997, vol. 56, no. 20, pp. R12685–R12687.CrossRefGoogle Scholar
  3. 3.
    Masset, A.C., Michel, C., and Maignan, A., Misfitlayered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9, Phys. Rev. B, 2000, vol. 62, no. 1, pp. 166–175.CrossRefGoogle Scholar
  4. 4.
    Rasekh, Sh., Madre, M.A., Sotelo, A., Guilmeau, E., Marinel, S., and Diez, J.C., Effect of synthetic methods on the thermoelectrical properties of textured Bi2Ca2Co1.7Ox ceramics, Bol. Soc. Esp. Ceram., 2010, vol. 49, no. 1, pp. 89–94.Google Scholar
  5. 5.
    Lee, M., Viciu, L., Li, L., Wang, Y., Foo, M.L., Watauchi, S., Pascal, R.A., Jr., Cava, R.J., and Ong, N.P., Large enhancement of the thermopower in NaxCoO2 at high Na doping, Nat. Mater., 2006, vol. 5, pp. 537–540.CrossRefGoogle Scholar
  6. 6.
    Krasutskaya, N.S., Klyndyuk, A.I., Evseeva, L.E., Tanaeva, S.A., Synthesis and properties of NaxCoO2 (x = 0.55, 0.89) oxide thermoelectrics, Inorg. Mater., 2016, vol. 52, no. 4, pp. 393–399.CrossRefGoogle Scholar
  7. 7.
    Sotelo, A., Rasekh, Sh., Madre, M.A., Guilmeau, E., Marinel, S., and Diez, J.C., Solution-based synthesis routes to thermoelectric Bi2Ca2Co1.7Ox, J. Eur. Ceram. Soc., 2011, vol. 31, pp. 1763–1769.CrossRefGoogle Scholar
  8. 8.
    Muguerra, H., Rivas-Murias, B., Traianidis, M., Henrist, C., Vertruyen, B., and Cloots, R., Improvement of the thermoelectric properties of [Bi1.68Ca2O4-δ]RS[CoO2]1.69 cobaltite by chimie duce methods, J. Solid State Chem., 2010, vol. 183, pp. 1252–1257.CrossRefGoogle Scholar
  9. 9.
    Sutiahja, I.M., The change in physical properties of Bi2Ca2Co2O8 thermoelectric materials induced by Pb and rare-earth dopings, Indones. J. Phys., 2011, vol. 22, no. 3, pp. 97–102.Google Scholar
  10. 10.
    Iguchi, E., Katoh, S., Nakatsugawa, H., and Munakata, F., Thermoelectric properties (resistivity and thermopower) in Bi1.5Pb0.5Ca2–xMxCo2O8–δ (M = Sc3+, Y3+, or La3+), J. Solid State Chem., 2002, vol. 167, pp. 472–479.CrossRefGoogle Scholar
  11. 11.
    Maignan, A., Pelloquin, D., Hebert, S., Klein, Y., and Hervieu, M., Thermoelectric power in misfit cobaltites ceramics: optimization by chemical substitutions, Bol. Soc. Esp. Ceram., 2006, vol. 45, no. 3, pp. 122–125.CrossRefGoogle Scholar
  12. 12.
    Guilmeau, E. and Chateigner, D., Synthesis and thermoelectric properties of Bi2.5Ca2.5Co2Ox layered cobaltites, J. Mater. Res., 2005, vol. 20, no. 4, pp. 1002–1008.CrossRefGoogle Scholar
  13. 13.
    Rehman, M., Abbasi, S.H., and Fatima-tur-Zahra, Synthesis and development of thermoelectric properties in layered Bi2A2CoO6, J. Supercond. Nov. Magn., 2015, vol. 28, pp. 1029–1034.CrossRefGoogle Scholar
  14. 14.
    Woermann, E. and Muan, A., Phase equilibria in the sustem CaO-cobalt oxide in air, J. Inorg. Nucl. Chem., 1970, vol. 32, pp. 1455–1459.CrossRefGoogle Scholar
  15. 15.
    Sedmidubsky, D., Jakes, V., Jankovsky, O., Leitner, J., Sofer, Z., and Hejtmanek, J., Phase equilibria in Ca–Co–O system, J. Solid State Chem., 2012, vol. 194, pp. 199–205.CrossRefGoogle Scholar
  16. 16.
    Roth, R.S., Hwang, N.M., Rawn, C.J., Burton, B.P., and Ritter, J.J., Phase equilibria in the systems CaO–CuO and CaO–Bi2O3, J. Am. Ceram. Soc., 1991, vol. 74, pp. 2148–2151.CrossRefGoogle Scholar
  17. 17.
    Hallstedt, B., Risold, D., and Gauckler, L.J., Thermodynamic assessment of the bismuth-calcium-oxide system, J. Am. Ceram. Soc., 1997, vol. 80, no. 10, pp. 2629–2636.CrossRefGoogle Scholar
  18. 18.
    Vstavskaya, E.Yu., Zuev, A.Yu., and Cherepanov, V.A., The phase diagram of the bismuth-calcium oxide system, Mater. Res. Bull., 1994, vol. 29, no. 12, pp. 1233–1238.CrossRefGoogle Scholar
  19. 19.
    Jankovsky, O., Sedmidubsky, D., and Sofer, Z., Phase diagram of the pseudobinary system Bi–Co–O, J. Eur. Ceram. Soc., 2013, vol. 33, pp. 2699–2704.CrossRefGoogle Scholar
  20. 20.
    Chizhova, E.A. and Klyndyuk, A.I., Synthesis and thermoelectric properties of ceramics based on bariumstrontium metaplumbates, Glass Phys. Chem., 2013, vol. 39, no. 4, pp. 453–457.CrossRefGoogle Scholar
  21. 21.
    Klyndyuk, A.I., Petrov, G.S., Poluyan, A.F., and Bashkirov, L.A., Physicochemical properties of Y2Ba1 - x-MxCuO5 (M: Sr,Ca) solid solutions, Inorg. Mater., 1999, vol. 35, no. 5, pp. 512–516.Google Scholar
  22. 22.
    Rawn, C.J., Roth, R.S., and McMurdie, H.F., Powder X-ray diffraction data for Ca2Bi2O5 and Ca4Bi6O13, Powder Diffract., 1992, vol. 7, no. 2, pp. 109–111.CrossRefGoogle Scholar
  23. 23.
    Matsukevich, I.V., Klyndyuk, A.I., Tugova, E.A., Tomkovich, M.V., Krasutskaya, N.S., and Gusarov, V.V., Synthesis and properties of materials based on layered calcium and bismuth cobaltites, Russ. J. Appl. Chem., 2015, vol. 88, no. 8, pp. 1241–1247.CrossRefGoogle Scholar
  24. 24.
    Premila, M., Bharati, A., and Gayathri, N., Metalinsulator transition in Ni-doped Na0.75CoO2: Insights from infrared studies, Pramana J. Phys., 2006, vol. 67, no. 1, pp. 153–162.CrossRefGoogle Scholar
  25. 25.
    Xu, J., Wei, C., and Jia, K., Thermoelectric performance of textured Ca3–xYbxCo4O9–δ ceramics, J. Alloys Compd., 2010, vol. 500, pp. 227–230.CrossRefGoogle Scholar
  26. 26.
    Tanaka, Y., Fujii, T., Nakanishi, M., Kusano, Y., Hashimoto, H., Ikeda, Y., and Takada, J., Systematic study on synthesis and structural, electrical transport and magnetic properties of Pb-substituted Bi–Ca–Co–O misfit-layer cobaltites, Solid State Commun., 2007, vol. 141, pp. 122–126.CrossRefGoogle Scholar
  27. 27.
    Aplesnin, S.S., Udod, L.V., Sitnikov, M.N., Velikanov, D.A., Gorev, M.V., Molokeev, M.S., Galyas, A.I., Yanushkevich, K.I., Magnetic and electrical properties of bismuth cobaltite Bi24(CoBi)O40 with charge ordering, Phys. Solid State, 2012, vol. 54, no. 10, pp. 2005–2014.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. I. Klyndyuk
    • 1
  • N. S. Krasutskaya
    • 1
  • E. A. Chizhova
    • 1
  1. 1.Belarusian State Technological UniversityMinskRepublic of Belarus

Personalised recommendations