Glass Physics and Chemistry

, Volume 42, Issue 6, pp 547–553 | Cite as

Characteristics of a melt of the corium–high alumina cement system

  • Yu. P. Udalov
  • I. V. Poznyak
  • I. Shrank
  • M. Kiselova
  • M. Streich
  • P. Sazavskii


The characteristics (composition of the quenched samples, ingot, and evaporation products) are studied of the melt of the corium–high alumina cement system in a weight ratio of 1: 1. In the quenched samples of the melt and ingot, signs of phase separation in the molten state are found. Below a temperature of 2100°C above the melt, aerosol particles with trimodal size distribution are formed; however, above this temperature, the nature of the granulometry of aerosols is bimodal. Moreover, the formation rate of aerosols increases dramatically. The form of aerosol particles under all the experimental conditions was spherical.


corium high alumina cement uranium oxide zirconium oxide aluminum oxide melt aerosols 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asmolov, V.G., Zagryazkin, V.N., Isaev, I.F., Semenov, I.M., Vishnevskii, V.Yu., D’yakov, E.K., Khabenskii, V.B., Beshta, S.V., Granovskii, V.S., Gusarov, V.V., and Udalov, Yu.P., Choice of buffer material for the containment trap for VVER-1000 Core Melt, At. Energ., 2001, vol. 92, no. 1, pp. 5–14.CrossRefGoogle Scholar
  2. 2.
    Gusarov, V.V., Khabenskii, V.B., Beshta, S.V., Udalov, Yu.P., Al’myashev, V.I., Krushinov, V.A., Vitol’, S.A., Martynov, V.V., and Lopukh, D.B., Calculated and experimental interaction of the molten corium with sacrificial material, in Voprosy bezopasnosti AES s VVER (Safety Issues of Nuclear Power Plants with Water–Water Energetic Reactors), St. Petersburg, 2000, pp. 161–208.Google Scholar
  3. 3.
    Gusarov, V.V., Khabenskii, V.B., Beshta, S.V., Udalov, Yu.P., Granovskii, V.S., and Al’myashev, V.I., Sacrificial materials for safety systems of nuclear power stations: A new class of functional materials, Therm. Eng., 2001, vol. 48, no. 9, pp. 721–724.Google Scholar
  4. 4.
    Udalov, Yu.P., Fedorov, N.F., Soloveichik, E.Ya., and Pavlova, E.A., New functional oxide materials for nuclear reactors, Khim. Prom-st’, 2003, vol. 80, no. 12, pp. 3–9.Google Scholar
  5. 5.
    TU (Technical Specifications) 1569-433-02068474-2008: Fireproof Aluminate-Corundum Concrete OKA. Technical Documentation to the Project for the Nuclear Reactor of Leningrad NPP-2, LN2O.B.110.&.0UJA97.JMR10.022.ME.0004.Google Scholar
  6. 6.
    Asmolov, V.G., Sulatskii, A.A., Beshta, S.V., Granovskii, V.S., Khabenskii, V.B., Krushinov, E.V., Vitol’, S.A., Al’myashev, V.I., Gusarov, V.V., and Strizhov, V.F., The interaction of nuclear reactor core melt with oxide sacrificial material of localization device for a nuclear power plant with water-moderated water-cooled power reactor, High Temp., 2007, vol. 45, no. 1, pp. 22–31.CrossRefGoogle Scholar
  7. 7.
    Lambertson, W.A. and Mueller, M.H., Uranium oxide phase equilibrium systems: I, UO2–Al2O3, J. Am. Ceram. Soc., 1953, vol. 36, no. 10, pp. 329–331.CrossRefGoogle Scholar
  8. 8.
    Plevacova, K., Journeau, C., Piluso, P., and Poirier, J., Eutectic crystallization in the UO2–Al2O3–HfO2 ceramic phase diagram, Ceram. Int., 2014, vol. 40, pp. 2565–2573.CrossRefGoogle Scholar
  9. 9.
    Lakiza, S.M. and Lopato, L.M., Stable and metastable phase relations in the system alumina–zirconia–yttria, J. Am. Ceram. Soc., 1997, vol. 80, no. 4, pp. 893–902.CrossRefGoogle Scholar
  10. 10.
    Kamaev, D.N., Archugov, S.A., and Mikhailov, G.G., Behavior of the Al2O3–ZrO2 system at high temperatures, Russ. J. Appl. Chem., 2005, vol. 78, no. 3, pp. 347–350.CrossRefGoogle Scholar
  11. 11.
    Romberger, K.A., Baes, C.F., and Stone, H.H., Phase equilibrium studies in the UO2–ZrO2 system, J. Inorg. Nucl. Chem., 1967, vol. 29, no. 7, pp. 1619–1630.CrossRefGoogle Scholar
  12. 12.
    Udalov, Y. and Morozov, Y., The program of calculation of fusibility curves of triple systems DIATRIS 1.2 (Algorithm, interface and technical application), Proc. 6th Int. School-Conf. on Phase Diagrams in Materials Science, Kiev, 2001, pp. 58–59.Google Scholar
  13. 13.
    Udalov, Yu.P., Pozniak, I.V., Pechenkov, A.Yu., Sazavsky, P., Kiseleva, M., Schrank, I., Pospekhova, J., Piluzo, P., and Grishchenko, D.V., Coordination nature of phase separation in oxide melts, Glass Phys. Chem., 2013, vol. 39, no. 4, pp. 431–443.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Yu. P. Udalov
    • 1
  • I. V. Poznyak
    • 2
  • I. Shrank
    • 3
  • M. Kiselova
    • 3
  • M. Streich
    • 3
  • P. Sazavskii
    • 3
  1. 1.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia
  2. 2.St. Petersburg State Electrotechnical UniversitySt. PetersburgRussia
  3. 3.Research Centre Řež Ltd. 25068Husinec-Řež 130, Czech RepublicHusinecCzech Republic

Personalised recommendations