Advertisement

Glass Physics and Chemistry

, Volume 42, Issue 6, pp 561–565 | Cite as

Effects of ZnO–B2O3 addition on sintering behaviors and microwave dielectric properties of Ba4Sm9.33Ti18O54 ceramics

Article

Abstract

Effects of ZnO–B2O3 (ZB) addition on the densification, phase evolution and microwaves dielectric properties of Ba4Sm9.33Ti18O54 (BST) ceramics for low-temperature fired applications have been investigated. The sintering temperature of BST ceramics can be effectively lowered to about 1000°C with introduction of ZB. Tungsten bronze like single phase is observed in the BST ceramics with 0.5 and 1.0% ZB. However, Sm2Ti2O7 secondary phase appears when ZB addition reaches 2%, and Sm2Ti2O7 phase gradually increases with the increase ZB addition. Microwave dielectric properties of the present ceramics are strongly dependent on phase constitution and density. Optimal microwave dielectric properties of ε = 63.4, Qf = 2830 GHz, τ f =–8.8 ppm/°C is obtained for BST ceramics with 1% ZB addition.

Keywords

low temperature sintering Ba4Sm9.33Ti18O54 microwave dielectric properties ZnO–B2O3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sebastian, M.T. and Jantunen, H., Low loss dielectric materials for LTCC applications: A review, Int. Mater. Rev., 2008, vol. 53, pp. 57–90.CrossRefGoogle Scholar
  2. 2.
    Ubic, R., Reaney, I.M., and Lee, W.E., Microwave dielectric solid-solution phase in system in BaO–Ln2O3–TiO2 (lanthanide cation), Int. Mater. Rev., 1998, vol. 43, no. 5, pp. 205–219.CrossRefGoogle Scholar
  3. 3.
    Huang, X., Li, X.M., Tang, D.P., and Zheng, X.H., Improved sintering characteristics and microwave dielectric properties of CaLa4Ti4O15 ceramics with BiVO4 addition, J. Mater. Sci.: Mater. Electron., 2015, vol. 26, no. 4, pp. 2033–2038.Google Scholar
  4. 4.
    Efimenko, L.P., Afanas’ev, V.P., and Baryshnikov, V.G., Synthesis of ferroelectric powders of bismuth titanate doped with yttrium, Glass Phys. Chem., 2014, vol. 70, no. 1, pp. 9–10.Google Scholar
  5. 5.
    Ohsato, H., Science of tungstenbronze-type like Ba6–3xR8 + 2xTi18O54 (R = rare earth) microwave dielectric solid solutions, J. Eur. Ceram. Soc., 2001, vol. 21, pp. 2703–2711.CrossRefGoogle Scholar
  6. 6.
    Wang, S.F., Hsu, Y.F., Wang, Y.R., Cheng, L.T., Hsu, Y.C., Chu, J.P., and Huang, C.Y., Densification, microstructural evolution and dielectric properties of Ba6–3x(SM1–yNdy)(8 + 2x)Ti18O54 microwave ceramics, J. Eur. Ceram. Soc., 2006, vol. 26, pp. 1629–1635.CrossRefGoogle Scholar
  7. 7.
    Kensuke Wada, Ken-ichi Kakimoto, and Hitoshi Ohsato, Microstructure and microwave dielectric properties of Ba4Sm9.33Ti18O54 ceramics containing columnar crystals, J. Eur. Ceram. Soc., 2003, vol. 23, pp. 2535–2539.CrossRefGoogle Scholar
  8. 8.
    Huang, B., Wang, Z., Chen, T., Wang, L., Fu, Z., and Zhang, Q., Microstructure and microwave dielectric properties of Ba4.2Nd9.2Ti18–xSnxO54 (x = 0, 0.25, 0.5, 1, 1.5, 2) ceramics, J. Mater. Sci.: Mater Electron., 2015, vol. 26, pp. 3375–3379.Google Scholar
  9. 9.
    Chen, H., Tang, B., Duan, S., Yang, H., Li, Y., Li, H., and Zhang, S., Microstructure and microwave dielectric properties of Ba3.75Nd9.5Ti18–z(Mg1/3Nb2/3)zO54 ceramics, J. Electron. Mater., 2015, vol. 44, pp. 1081–1087.CrossRefGoogle Scholar
  10. 10.
    Guo, X., Tang, B., Liu, J., Chen, H., and Zhang, S., Microwave dielectric properties and microstructure of Ba6 -3xNd8 + 2xTi18 -y(Cr1/2Nb1/2)yO54 ceramics, J. Alloys Compd., 2015, vol. 646, pp. 512–516.CrossRefGoogle Scholar
  11. 11.
    Zuo, M.W., Li, W., Shi, J.L., and Zeng, Q., Influence of CuO addition to BaSm2Ti4O12 microwave ceramics on sintering behavior and dielectric properties, Mater. Res. Bull., 2006, vol. 41, pp. 1127–1132.CrossRefGoogle Scholar
  12. 12.
    Kim, M.H., Lim, J.B., Nahm, S., Paik, J.H., and Lee, H.J., Low temperature sintering of BaCu(B2O5)-added BaO–Re2O3–TiO2 (Re = Sm, Nd) ceramics, J. Eur. Ceram., 2007, vol. 27, pp. 3033–3037.CrossRefGoogle Scholar
  13. 13.
    Ota, Y., Kakimoto, K., Ohsato, H., and Okawa, T., Low-temperature sintering of Ba6–3xSm8 + 2xTi18O54 microwave dielectric ceramics by B2O3 and GeO2 addition, J. Eur. Ceram., 2004, vol. 24, pp. 1755–1760.CrossRefGoogle Scholar
  14. 14.
    Long, M., Tang, B., Zhang, S., and Yu, S., Influence of Ba–Zn–B additives on the sintering behavior and dielectric properties of BaNd2Ti4O12 ceramics, Mater. Lett., 2012, vol. 68, pp. 486–489.CrossRefGoogle Scholar
  15. 15.
    Hsiang, H.I. and Chen, T.H., Influence of glass additives on the sintering behavior and dielectric properties of BaO center dot (Nd0.8Bi0.2)2O3 center dot 4TiO2 ceramics, J. Alloys Compd., 2009, vol. 467, pp. 485–490.CrossRefGoogle Scholar
  16. 16.
    Kim, J.R., Kim, D.W., Cho, I.S., Kim, B.S., An, J.S., and Hong, K.S., Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb6O28 with ZnO–B2O3 glass additions for LTCC applications, J. Eur. Ceram., 2007, vol. 27, pp. 3075–3079.CrossRefGoogle Scholar
  17. 17.
    Zhou, H., Wang, H., Zhou, D., Pang, L.X., and Yao, X., Effect of ZnO and B2O3 on the sintering temperature and microwave dielectric properties of LiNb0.6Ti0.5O3 ceramics, Mater. Chem. Phys., 2008, vol. 109, pp. 510–514.CrossRefGoogle Scholar
  18. 18.
    Lu, X., Zheng, Y., Dong, Z., and Huang, Q., Low temperature sintering and microwave dielectric properties of 0.6Li2ZnTi3O8–0.4Li2TiO3 ceramics doped with ZnO–B2O3–SiO2 glass, Mater. Lett., 2014, vol. 131, pp. 1–4.CrossRefGoogle Scholar
  19. 19.
    Fan, X.C. and Chen, X.M., Complex-permittivity measurement on high-Q materials via combined numerical approaches, IEEE Trans. Microwave Theory Tech., 2005, vol. 53, pp. 3130–3134.CrossRefGoogle Scholar
  20. 20.
    Kim, J.R., Kim, D.W., Jung, H.S., and Hong, K.S., Low-temperature sintering and microwave dielectric properties of Ba5Nb4O15 with ZnB2O4 glass, J. Eur. Ceram., 2006, vol. 26, pp. 2105–2109.CrossRefGoogle Scholar
  21. 21.
    Takahashi, J., Kageyama, K., and Hayashi, T., Dielectric-properties of double-oxide ceramics in the system Ln2O3–TiO2 (Ln = La, Nd and Sm), Jpn. J. Appl. Phys., 1991, vol. 30, pp. 2354–2358.CrossRefGoogle Scholar
  22. 22.
    Lyashenko, L.P., Belov, D.A., and Shcherbakova, L.G., Conductivity of Sm2TiO5 and Sm2Ti2O7, Inorg. Mater., 2008, vol. 44, pp. 1349–1353.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Advanced Ceramics, College of Materials Science and EngineeringFuzhou UniversityFuzhouChina

Personalised recommendations