Glass Physics and Chemistry

, Volume 42, Issue 4, pp 408–413 | Cite as

Porous ceramics based on the ZrO2(Y2O3)–Al2O3 system for filtration membranes

  • L. V. Morozova
  • M. V. Kalinina
  • T. V. Khamova
  • E. A. Vasil’eva
  • O. A. Shilova


The results of the studies of the process of fabricating ceramic filtration membranes in the system ZrO2(Y2O3)–Al2O3 are presented. The phase compositions of the precursor powders and sintered ceramics have been investigated and their porous structures have been determined. Two stages of the implementation of the technology were demonstrated: fabrication of substrates with an open porosity ranging from 20 to 47% and pore sizes in the 100–300 nm range, as well as the deposition of nanocrystalline aluminum oxide layers on them. It has been established that the pore size distribution in the membrane layer of α-Al2O3 is unimodal (from 30 to 100 nm).


filters zirconium dioxide aluminum oxide porous ceramics membrane layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Savchenko, N.L., Korolev, P.V., Mel’nikov, A.G., et al., Structure, phase composition and mechanical properties of composites based on ZrO2–Y2O3–Al2O3, Perspekt. Mater., 2009, no. 7, pp. 267–273.Google Scholar
  2. 2.
    Savchenko, N.L., Korolev, P.V., Sablina, T.Yu., et al., Structure and mechanical properties of sintered composites based on ZrO2–Y2O3–Al2O3, Fundam. Probl. Sovr. Materialoved., 2008, no. 1, pp. 94–99.Google Scholar
  3. 3.
    Podzorova, L.I., Il’icheva, A.A., Mikhailina, N.A., et al., Mechanical properties of ceramics based on Al2O3 and t-ZrO2 in changing the matrix, Ogneupory Tekh. Keram., 2007, no. 2, pp. 6–9.Google Scholar
  4. 4.
    Ul’yanova, T.M., Krut’ko, N.P., Titova, L.V., and Zonov, Yu.G., A study of the structure and properties of nanostructured ZrO2–Y2O3–Al2O3 composite powders, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2010, vol. 4, no. 4, pp. 603–608.CrossRefGoogle Scholar
  5. 5.
    Lukin, E.S., Makarov, N.A., Kozlov, A.I., et al., Oxide ceramics of the new generation and areas of application, Glass Ceram., 2008, vol. 65, no. 9, pp. 348–352.CrossRefGoogle Scholar
  6. 6.
    Komolikov, Yu.I. and Blaginina, L.L., Technology of ceramic micro- and ultrafiltration membranes, Ogneupory Tekh. Keram., 2002, no. 5, pp. 20–28.Google Scholar
  7. 7.
    Brock, T., Membrane Filtration: A Users Guide and Reference Manual, Madison: Sci. Tech., 1983.CrossRefGoogle Scholar
  8. 8.
    Guzman, I.Ya., Certain principles of formation of porous ceramic structures. Properties and applications (a review), Glass Ceram., 2003, vol. 60, no. 9, pp. 280–283.CrossRefGoogle Scholar
  9. 9.
    Gusev, A.I. and Rempel’, A.A., Nanokristallicheskie materialy (Nanocrystalline Materials), Moscow: Fizmatlit, 2001.Google Scholar
  10. 10.
    Panova, T.I., Arsent’ev, M.Yu., Morozova, L.V., and Drozdova, I.A., Synthesis and investigation of the structure of ceramic nanopowders in the ZrO2–CeO2–Al2O3 system, Glass Phys. Chem., 2010, vol. 36, no. 4, pp. 470–477.CrossRefGoogle Scholar
  11. 11.
    Panova, T.I., Morozova, L.V., and Polyakova, I.G., Synthesis and investigation of properties of nanocrystalline dioxides zirconia and hafnia, Glass Phys. Chem., 2011, vol. 37, no. 2, pp. 179–187.CrossRefGoogle Scholar
  12. 12.
    Duran, P., Villegas, M., and Capel, F., Low-temperature sintering and microstructural development of nanocrystalline Y-TZP powder, J. Eur. Ceram. Soc., 1996, vol. 16, no. 9, pp. 945–952.CrossRefGoogle Scholar
  13. 13.
    Avakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Methods of Activa-tion of Chemical Processes), Novosibirsk: Nauka, 1986.Google Scholar
  14. 14.
    Morozova, L.V., Panova, T.I., Lapshin, A.E., and Glushkova, V.B., Mechanochemical synthesis and sintering of (ZrO2)0.97(Y2O3)0.03, Inorg. Mater., 2000, vol. 36, no. 8, pp. 835–838.CrossRefGoogle Scholar
  15. 15.
    Nikitin, D.S., Zhukov, V.A., Perkov, V.V., et al., Preparation of porous ceramics from nanocrystalline zirconia and their microstructure, Inorg. Mater., 2004, vol. 40, no. 7, pp. 760–763.CrossRefGoogle Scholar
  16. 16.
    Buyakova, S.P., Properties, structure, phase composition, and patterns of formation of porous nanosystems based on ZrO2, Extended Abstract of Doctoral Dissertation, Tomsk: Inst. Strenth Phys. Mater. Sci., Sib. Branch, Tuss. Acad. Sci., 2008.Google Scholar
  17. 17.
    Kul’kov, S.N., Skripnyak, V.A., Skripnyak, E.G., and Buyakova, S.P., Mechanical properties of nanocrystalline bulk polycrystalline ceramic materials based on alumina and zirconia, in Sintez i svoistva nanokristallicheskikh i submikrostrukturnykh materialov (Synthesis and Properties of Nanocrystalline Submicrostructural Materials), Korotaev, A.D., Ed., Tomsk: Tomsk. Gos. Univ., 2007, pp. 232–328.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • L. V. Morozova
    • 1
  • M. V. Kalinina
    • 1
  • T. V. Khamova
    • 1
  • E. A. Vasil’eva
    • 2
  • O. A. Shilova
    • 1
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Military Institute of the Railway Forces and Military CommunicationsPetergofRussia

Personalised recommendations