Glass Physics and Chemistry

, Volume 42, Issue 2, pp 177–181 | Cite as

Simulation of carbon nanotubes as macromolecular coils in nanocomposites with glassy polymer matrix

Article
  • 30 Downloads

Abstract

Ring-shaped carbon nanotubes have been simulated as macromolecular coils in the context of the fractal physical chemistry of polymer solutions k]The dependence of the interfacial adhesion level in polymer/carbon nanotube nanocomposites on the structure of the above composites k]characterized by its fractal dimension k]has been shown k]The validity of this interpretation has been confirmed via a description of the degree of reinforcement of nanocomposites within the reinforcement molecular model.

Keywords

nanocomposite epoxy polymer ring-shaped formations interfacial adhesion fractal dimension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schaefer, D.W. and Justice, R.S., How nano are nanocomposites? Macromolecules, 2007, vol. 40, no. 24, pp. 8501–8517.CrossRefGoogle Scholar
  2. 2.
    Kozlov, G.V., Yanovskii, Yu.G., Zhirikova, Z.M., Aloev, V.Z., and Karnet, Yu.N., Geometry of carbon nanotubes in the medium of composite polymeric matrices, Mekh. Kompoz. Mater. Konstr., 2012, vol. 18, no. 1, pp. 131–153.Google Scholar
  3. 3.
    Budtov, V.P., Fizicheskaya khimiya rastvorov polimerov (Physical Chemistry of Polymer Solutions), St. Petersburg: Khimiya, 1992.Google Scholar
  4. 4.
    Kozlov, G.V., Dolbin, I.V., and Zaikov, G.E., The Fractal Physical Chemistry of Polymer Solutions and Melts, Toronto, NJ: Apple Academic Press, 2014.Google Scholar
  5. 5.
    Blond, D., Barron, V., Ruether, M., Ryan, K.P., Nicolosi, V., Blau, W.J., and Coleman, J.N., Enhancement of modulus, strength and toughness in poly(methyl methacrylate)-based composites by the incorporation of poly(methyl methacrylate)-functionalized nanotubes, Adv. Funct. Mater., 2006, vol. 16, no. 12, pp. 1608–1614.CrossRefGoogle Scholar
  6. 6.
    Komarov, B.A., Dzhavadyan, E.A., Irzhak, V.I., Ryabenko, A.G., Lesnichaya, V.A., Zvereva, G.I., and Krestinin, A.V., Epoxy-amine composites with ultralow concentrations of single-layer carbon nanotubes, Polymer Sci., Ser. A, 2011, vol. 53, no. 6, pp. 502–509.CrossRefGoogle Scholar
  7. 7.
    Estrin, Ya.I., Badamshina, E.R., Grishchuk, A.A., Kulagina, G.S., Lesnichaya, V.A., Ol’khov, Yu.A., Ryabenko, A.G., and Sul’yanov, S.N., Properties of nanocomposites based on crosslinked elastomeric polyurethane and ultrasmall additives of single-wall carbon nanotubes, Polymer Sci., Ser. A, 2012, vol. 54, no. 4, pp. 290–298.CrossRefGoogle Scholar
  8. 8.
    Mikitaev, A.K. and Kozlov, G.V., Description of the degree of reinforcement of polymer/carbon nanotube nanocomposites in the framework of percolation models, Phys. Solid State, 2015, vol. 57, no. 5, pp. 974–977.CrossRefGoogle Scholar
  9. 9.
    Mikitaev, A.K. and Kozlov, G.V., Percolation model of the nanocomposites polymer/carbon nanotubes strengthening, Fiz. Mekh. Mater., 2015, vol. 22, no. 2, pp. 101–106.Google Scholar
  10. 10.
    Mikitaev, A.K. and Kozlov, G.V., Dependence of the degree of reinforcement of polymer/carbon nanotubes nanocomposites on the nanofiller dimension, Dokl. Phys., 2015, vol. 60, no. 5, pp. 203–206.CrossRefGoogle Scholar
  11. 11.
    Mikitaev, A.K. and Kozlov, G.V., Effect of sonication on the structure of carbon nanotubes in polymer nanocomposites, Fiz. Khim. Obrab. Mater., 2015, no. 2, pp. 80–83.Google Scholar
  12. 12.
    Bridge, B., Theoretical modeling of the critical volume fraction for percolation conductivity of fibre-loaded conductive polymer composites, J. Mater. Sci. Lett., 1989, vol. 8, no. 2, pp. 102–103.CrossRefGoogle Scholar
  13. 13.
    Mikitaev, A.K., Kozlov, G.V., and Zaikov, G.E., Polimernye nanokompozity: mnogoobrazie strukturnykh form i prilozhenii (Polymer Nanocomposites: A Variety of Structural Forms and Applications), Moscow: Nauka, 2009.Google Scholar
  14. 14.
    Kozlov, G.V. and Mikitaev, A.K., Structure and Properties of Nanocomposites Polymer/Organoclay, Saarbrucken: LAP LAMBERT, 2013.Google Scholar
  15. 15.
    Yanovskii, Yu.G., Kozlov, G.V., and Karnet, Yu.N., Fractal description of significant nano-effects in polymer composites with nanosized fillers. Aggregation, phase interaction, and reinforcement, Phys. Mesomech., 2013, vol. 16, no. 1, pp. 9–22.CrossRefGoogle Scholar
  16. 16.
    Coleman, J.N., Cadek, M., Ryan, K.P., Fonseca, A., Nagy, J.B., Blau, W.J., and Ferreira, M.S., Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling, Polymer, 2006, vol. 47, no. 23, pp. 8556–8561.CrossRefGoogle Scholar
  17. 17.
    Wu, S., Chain structure and entanglement, J. Polym. Sci., Part B: Polym. Phys., 1989, vol. 27, no. 4, pp. 723–741.CrossRefGoogle Scholar
  18. 18.
    Kozlov, G.V., Ovcharenko, E.N., and Mikitaev, A.K., Struktura amorfnogo sostoyaniya polimerov (Structure of the Polymer Amorphous State), Moscow: Ross. Khim.-Tekhnol. Univ. im. D.I. Mendeleeva, 2009.Google Scholar
  19. 19.
    Magomedov, G.M. and Kozlov, G.V., Sintez, struktura i svoistva setchatykh polimerov i nanokompozitov na ikh osnove (Synthesis, Structure, and Properties of CrossLinked Polymers and Composites Based on Them), Moscow: Akademiya Estestvoznaniya, 2010.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Kabardino-Balkaria State UniversityKabardino-BalkariaRussia

Personalised recommendations